CHAFTER 7

Learning and Relearning in Boltzmann Machines

G. E. HINTON and T. J. SETNOWSKI

Many of the chapters in this volume make use of the ability of a paral-
lel network to perform cooperative searches for good solutions to pmﬁ-'
lems. The basic idea is simple; The weights on the connectic
between processing units encode knowledge about how things normal
fit together in some domain and the initial states or external inpuis to 8
subset of the units encode some fragments of a structure within the
domain. These fragments constitute a problem: What is the whole
structure from which they probably came? The network compules
*good solution” to the problem by repeatedly updating the states
units that represent possible other parts of the structure until the
work eventually settles into a stable state of activity that represents (l
solution.

One field in which this style of computation seems pamcul
appropriate is vision (Ballard, Hinton, & Sejnowski, 1983). A
system must be able to solve large constraint-satisfaction pre biET
rapidly in order to interpret a two-dimensional intensity image in 1
of the depths and orientations of the three-dimensional surfaces in 1
world thal gave rise to that image. In general, the information in il
image is not sufficient to specify the three-dimensional surfaces w
the interpretive process makes use of additional plausible constrain
about the kinds of structures that typically appear. Neighboring p
of an image, for example, usually depict fragments of surface that
similar depths, similar surface orientations, and the same reflectar
The most plausible interpretation of an image is the one that satisii
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constraints of this kind as well as possible, and the human visual sys-
tem stores enough plausible constraints and is good enough at applying
them that it can arrive at the correci interpretation of most normal
images.

The computation may be performed by an iterative search which
starts with a poor interpretation and progressively improves it by reduc-
ing a cost funclion that measures the extent to which the current
interpretation violates the plausible constraints. Suppose, for example,
that each unit stands for a small three-dimensional surface fragment,
and the state of the unit indicates the current bet about whether that
surface fragment is part of the best three-dimensional interpretation.
Plausible constraints about the nature of surfaces can then be encoded
by the pairwise interactions between processing elements. For
example, two units that stand for neighboring surface fragments of
similar depth and surface orientation can be mutually excitatory to
encode the constraints that each of these hypotheses tends to support
the other (because objects tend to have continuous surfaces).

RELAXATION SEARCHES

The general idea of using parallel networks to perform relaxation
searches that simultaneously satisfy multiple constraints is appealing. It
might even provide a successor to telephone exchanges, holograms, or
communities of agents as a metaphor for the style of computation in
cerebral cortex. But some tough technical gquestions have to be
answered before this style of computation can be accepted as either
efficient or plausible:

& Will the network settle down or will it oscillate or wander aim-
lessly?

® What does the network compute by settling down? We need
some characterization of the computation that the network per-
forms other than the network itself. Ideally we would like 10
be able to say what oughr to be computed (Marr, 1982) and
then to show that a network can be made to compute it.

® How long does the network take 1o settle on a solution? If
thousands of iterations are required the method becomes
implausible as a model of how the cortex solves constraint-
satisfaction problems.
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e How much information does each unit need to convey to its
neighbors? In many relaxation schemes the unils ::ommumca?e
accurate real values to one another on each iteration. Again
this is implausible if the units are intended to be like cortical
neurons which communicate using all-or-none spikes. To send
a real-value, accurate to within 3%, using firing rates requires
about 100 ms which 15 about the time allowed for the whole
iterative process to settle down.

e How are the weights that encode the knowledge acquired? For
models of low-level vision it is possible for a programmer to
decide on the weights, and evolution might do the same for the
earliest stages of biological visual systems. But if the same kind
of constraini-satisfaction searches are to be used for higher
level functions like shape recognition or content-addressable
memory, there must be some learning procedure that automati-
cally encodes properties of the domain into the weights.

This chapter is mainly concerned with the last of these questions, but
the learning procedure we present is an unexpected consequence of our
attempt to answer the other questions, so we shall start with them.

Relaxation, Optimization, and Weak Constraints

One way of ensuring that a relaxation search is computing smna_zth'mg
sensible (and will eventually settle down) is to show that it is solving an
optimization problem by progressively reducing the value of a cost
function. Each possible state of activity of the network has an associ-
ated cost, and the rule used for updating activity levels is chosen so
that this cost keeps falling. The cost function must be chosen so that
low-cost states represent good solutions to problems in the domain.

Many optimization problems can be cast in a framework known as
linear programming. Thers are some variables which take on real
values and there are linear equality and inequality constraints between
variables. Each combination of values for the variables has an associ-
ated cost which is the sum over all the variables of the current value
times a cost-coefficient. The aim is to find a combination of values
that satisfies all the constraints and minimizes the cost function. If the
variables are further constrained to take on only the values 1 or O the
problem is called zero-one programming. Hinton (1977) has shown
that certain zerc-one programming problems can be implemented as
relaxation searches in parallel networks. This allows networks to find
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good selutions to problems in which there are discrete hypotheses that
are true or false. Even though the allowable solutions all assign values
of 1 or 0 to the hypotheses, the relaxation process works by passing
through intermediate states in which hypothesis units have real-valued
activity levels lying between 1 and 0. Each constraint is enforced by a
feedback loop that measures the amount by which the current values
violate the constraint and tries to alter the values of the variables to
reduce this violation.

Linear programming and its varianis make a sharp distinction
between constraints (which musr be satisfied) and costs. A solution
which achieves a very low cost by violating one or two of the con-
straints is simply not allowed. In many domains, the distinction
between constraints and cosis is not so clear-cut. In vision, for
example, it is usually helpful to use the constraint that neighboring
pieces of surface are at similar depths because surfaces are mostly con-
tinuous and are rarely parallel to the line of sight. But this is not an
absolute constraint. It doesn’t apply at the edge of an object. So a
visual system needs to be able Lo generate interpretations that violate
this constraint if it can satisfy many other constraints by doing so.
Constraints like these have been called “weak" constraints (Blake, 1983)
and it is possible to formulate optimization problems in which all the
constraints are weak and there is no distinction between constraints and
costs. The optimal solution is then the one which minimizes the total
constraint violation where different constraints are given different
strengths depending on how reliable they are. Another way of saying
this is that all the constraints have associated plausibilities, and the
most plausible solution is the one which fits these plausible constraints
as well as possible.

Some relaxation schemes dispense with saparate feedback loops for
the constraints and implement weak constraints directly in the excita-
lory and inhibitory interactions between units. We would like these
networks to settle into states in which a few units are fully active and
the rest are inactive. Such states constitute clean "digital” interpreta-
tions. To prevent the network from hedging its bets by settling into a
state where many units are slightly active, it is usually necessary to use
a strongly nonlinear decision rule, and this also speeds convergence.
However, the strong nonlinearities that are needed to force the network
o make a decision also cause it to converge on different states on dif-
ferent occasions: Even with the same external inputs, the final state
depends on the initial state of the net. This has led many people (Hop-
field, 1982; Rosenfeld, Hummel, & Zucker, 1976) 1o assume that the
Particular problem to be solved should be encoded by the initial state of
the network rather than by sustained external input to some of its
units,
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Hummel and Zucker (1983) and Hopfield (1982) have shown that
some relaxation schemes have an associated "potential” or cost function
and that the states to which the network converges are local minima of
this function. This means that the networks are performing optimiza-
tion of a well-defined function. Unfortunately, there is no guarantee
that the network will find the best minimum. One possibility 15 10
redefine the problem as finding the local minimum which is closest 1o
the initial state. This is useful if the minima are used lo represent
"iterns” in a memory, and the initial states are queries to memory
which may contain missing or erroneous information. The network
simply finds the minimum that best fits the query. This idea was used
by Hopfield (1982) who introduced an interesting kind of network in
which the units were always in one of two states.' Hopfield showed that
if the units are symmetrically connected (ie., the weight from unit i to
unit j exactly equals the weight from unit j to unit §) and if they are
updated one at a time, each update reduces (or at worst does not
increase) the value of a cost function which he called "energy” because
of the analogy with physical systems. Consequently, repeated iterations
are guaranteed to find an energy minimum. The global energy of the
system is defined as

E=-% Wy S8 + 285 (1)
=4 i

where w;, is the strength of connection (synaptic weight) from the jth
to the ith unit, 5 is the state of the ith unit (0 or 1), and A, is a
threshold.

The updating rule is to switch each unit into whichever of its two
states vields the lower total energy given the current states of the other
units. Because the connections are symmetrical, the difference between
the energy of the whole system with the kth hypothesis false and its
energy with the kth hypothesis true can be determined locally by the
kth unit, and is just

ﬂ.Ek:E-WESi _Ek' (i)

Therefore, the rule for minimizing the energy contributed by a unit‘is.
to adopt the true state if its total input from the other units exceeds its
threshold. This is the familiar rule for binary threshold units.

| Hopfield used the states 1 and —1 because his model was derived from physical sys-

tems called spin glasses in which spins are either “up™ of "down." Provided the units.

have threshoids, models that use 1 and —1 can be translated into models that use 1 and 0
end have different thresholds,
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Using Probabilistic Decisions to Escape From Local Minima

Al about the same time that Hopfield showed how parallel networks
of this kind could be used to access memories that were stored as local
minima, Kirkpatrick, working at IBM, introduced an interesting new
search technique for solving hard optimization problems on conven-
tional computers.

Ome standard technique is lo use gradient descent: The values of the
variables in the problem are modified in whatever direction reduces the
cost function (energy). For hard problems, gradient descent gets stuck
at local minima that are not globally optimal. This is an inevitable
consequence of only allowing downhill moves. If jumps to higher
energy states occasionally occur, it is possible to break out of local
minima, but it is not obvious how the system will then behave and it is
far from clear when uphill steps should be allowed.

Kirkpatrick, Gelatt, and Vecchi (1983) used another physical analogy
to guide the use of occasional uphill steps. To find a very low energy
state of a metal, the best strategy is to melt it and then to slowly reduce
its temperature. This process is called annealing, and so they named
their search method "simulated annealing” Chapter 6 coniains a dis-
cussion of why annealing works. We give a simple intuitive account
here.

One way of seeing why thermal noise is helpful is to consider the
energy landscape shown in Figure 1. Let us suppose that a ball-bearing
starts at a randomly chosen point on the landscape. If it always goes
downhill (and has no inertia), it will have an even chance of ending up
at A or B because both minima have the same width and so the initial

FIGURE 1. A smple energy landscape comtaining two local minima separated by an
energy barrier. Shaking can be used to allow the state of the network (represented here
by a ball-beanmg) to escape from local minima,
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random point is equally likely to lie in either minimum. If we shake
the whole system, we are more likely to shake the ball-bearing from A
to B than vice versa because the energy barrier is lower from the A
side. If the shaking is gentle, a transition from A to B will be many
times as probable as a transition from B to A, but both transitions will
be very rare. So although gentle shaking will ultimately lead to a very
high probability of being in B rather than A, it will take a very long
time before this happens. On the other hand, if the shaking is violent,
the ball-bearing will cross the barrier frequently and so the ultimate
probability ratio will be approached rapidly, but this ratio will not be
very good: With violent shaking it is almost as easy to cross the barrier
in the wrong direction (from B to A) as in the right direction. A good
compromise is to start by shaking hard and gradually shake more and
more gently. This ensures that at some stage the noise level passes
through the best possible compromise between the absolute probability
of & transition and the ratio of the probabilities of good and bad transi-
tions. It also means that at the end, the ball-bearing stays right at the
bottom of the chosen minimum.

This view of why annealing helps is not the whole story. Figure 1 is
misleading because all the states have been laid out in one dimension.
Complex systems have high-dimensional state spaces, and so the barrier
between two low-lying states is typically massively degenerate: The
number of ways of getting from one low-lying state to another is an
exponential function of the height of the barrier one is willing to cross.
This means that a rise in the level of thermal noise opens up an enor-
mous variety of paths for escaping from a local minimum and even
though each path by itself is unlikely, it is highly probable that the sys-
tem will cross the barrier. We conjecture that simulated annealing will

only work well in domains where the energy barriers are highly

degenerate.

Applying Simulated Annealing to Hopfield Nets

There is a simple modification of Hopfield's updating rule that allows

parallel networks to implement simulated annealing. If the energy gap
between the 1 and 0 states of the kth unit is AE; then, regardless of
the previous state set, 5, = 1 with probability

1 (3)

P = —AE/T
I!+e “"'
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where T is a parameter which acts like the temperature of a physical
system. This local decision rule ensures that in thermal equilibrium the
relative probability of two global states is determined solely by their
energy difference, and follows a Boltzmann distribution:

e @
Py

where P, is the probability of being in the ath global state, and E, is
the energy of that state. .

At low lemperatures there is a strong bias in favor of states with low
energy, but the time required to reach equilibrium may be ]nr!g, At
higher temperatures the bias is not so favorable, but equilibrium 1s
reached faster. The fasiest way 10 reach equilibrium at a given tem-
perature is generally to use simulated annealing: Start with a higher
temperature and gradually reduce it.

The idea of implementing constraints as interactions between slo-
chastic processing elements was by Moussouris (1974} who
discussed the identity between Bolizmann distributions and Markov
candom fields. The idea of using simulated annealing to find low
energy states in parallel networks has been investigated independently
by several different groups. 5. Geman and D. Geman (1984) esta-
blished limits on the allowable speed of the annealing schedule and
showed that simulated annealing can be very effective for removing
noise from images. Hinton and Seinowski (1983b) showed how the use
of binary stochastic elemenis could solve some problems that plague
other relaxation lechniques, in particular the problem of learning the
weights. Smolensky (1983) has been investigating a similar scheme
which he calls "harmony theory.” This scheme is discussed in detail in
Chapter 6. Smolensky’s harmony is equivalent 10 our energy {with a
sign reversal).

Pattern Completion

One way of using a parallel network is to treat it as a patiemn comple-
tion device. A subset of the units are “clamped” into their on or off
states and the weights in the network then complete the pa{tc:m_hy
determining the states of the remaining units. There are strong limita-
tions on the sets of binary vectors that can be learned if the network
has one unit for each component of the vector. These limits can be
transcended by using extra units whose states do not correspond o
components in the vectors 10 be learned. The weights of connections
io these extra units can be used to represent complex interactions that
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cannol be expressed as pairwise correlations between the components
of the vectors. We call these extra units hidden units (by analogy with
hidden Markov processes) and we call the units that are used to speafy
the patiemns to be learned the visible units. The visible units are the
interface between the network and the environment that specifies vec-
tors for it to learn or asks it to complete a partial vector. The hidden
units are where the network can build its own internal representations.

Sometimes. we would like to be able to complete a pattern from any
sufficiently large part of it without knowing in advance which part will
be given and which part must be completed. Other times we know in
advance which parts will be given as input and which parls will have to
be completed as output. 5o there are two different completion para-
digms. In the first, any of the wvisible units might be part of the
required output. In the second, there is a distinguished subset of the
visible units, called the input units, which are always clamped by the
environment, so the network never needs to determine the states of
these units,

EASY AND HARD LEARNING

Consider a network which is allowed to run freely, using the proba-
bilistic decision rule in Equation 3, without having any of its units
clamped by the environment. When the network reaches thermal
equilibrium, the probability of finding it in any particular global state
depends only on the energy of that state (Equation 4). We can there-
fore control the probabilities of global states by controlling their ener-
gies. If each weight only contributed to the energy of a single global
state, this would be straightforward, but changing a weight will actually
change the energies of many different stales so it is not immediately
obvious how a weight-change will affect the probability of a particular
global state. Fortunately, if we run the network until it reaches thermal
equilibrium, Equations 3 and 4 allow us to derive the way in which the
probability of each global state changes as a weight is changed:

alnP; | (5)
il LS ) 657 57T T, i et I
Yon = | 5% 57 E,s s 5P s)

where 5 is the binary state of the ith unit in the «th global state and
P. is the probability, at thermal equilibrium, of global state « of the
network when none of the visible units are ¢clamped (the lack of clamp-
ing is denoted by the superscript —). Equation 5 shows that the effect
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of a weight on the log probability of a global state can be computed
from purely local information because it only involves the behavior of
the two units that the weight connects (the second term is just the
probability of finding the ith and jth units on together). This makes it
easy to manipulate the probabilities of global states provided the desired
probabilities are known (see Hinton & Sejnowski, 1983a, for details).

Unfortunately, it is normally unreasonable to expect the environment
or a teacher to specify the required probabilities of entire global states
of the network. The task that the network must perform is defined in
terms of the states of the wvisible units, and so the environment or
teacher only has direct access to the siates of these units. The difficult
learning problem is to decide how to use the hidden units to help
achieve the reguired behavior of the visible units. A learning rule
which assumes that the network is instructed from outside on how to
use all of its units is of limited interest because it evades the main
problem which is 1o discover appropriate representations for a given
task among the hidden units.

In statistical terms, there are many kinds of statistical structure impli-
cit in a large ensemble of environmental vectors. The separate proba-
bility of each visible unit being active is the first-order structure and
can be captured by the thresholds of the visible units. The v¥2 pair-
wise correlations between the v visible units constitute the second-
order structure and this can be captured by the weights between pairs of
units.2 All structure higher than second-order cannot be captured by
pairwise weights berween the visible units. A simple example may help to
clarify this crucial point.

Suppose that the ensemble consists of the vectors: (1 100, (1 0 1),
(0 11), and (0 0 0), each with a probability of 0.25. There is clearly
some structure here because four of the eight possible 3-bit veclors
never oceur. However, the structure is entirely third-order. The first-
order probabilities are all 0.5, and the second-order correlations are all
0, so if we consider only these statistics, this ensemble is indistinguish-
able from the ensemble in which all eight vectors occur eguiprobably.

The Widrow-HofT rule or perceptron convergence procedure (Rosen-
blatt, 1962) is a learning rule which is designed to capture second-order
structure and it therefore fails miserably on the example just given. If
the first two bits are treated as an input and the last bit is treated as the
required output, the ensemble corresponds to the function "exclusive-
or” which is one of the examples used by Minsky and Papert (1969) to
show the strong limitations of one-layer perceptrons. The Widrow-HofT

2 Factor amalysis confines itself 10 capturing as much of the second-order structure as
possible in a few underlying “factors” 1L ignores all higher order structure which is where
much of the interesting information hes for all but the most simple ensembles of vectiors.










































