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A Distributed Model of
Human Learning and Memory

J. L. McCLELLAND and D. E. RUMELHART

The view that human memory is distributed has come and gone
several times over the years. Hughlings-Jackson, the 19th century neu-
rologist; Kurt Goldstein, the Gestalt neurologist of the early 20th cen-
tury; and Karl Lashley, the physiological psychologist of the same era,
all held to variants of a distributed model of the physiology of learmning
and memory.

While Lashley's and Goldstein's more radical views have not been
borme out, the notion that memory is physiologically distributed within
circumscribed regions of the brain seems 1o be quite a reasonable and
plausible assumption (see Chapters 20 and 21). But given the rather
loose coupling between a psychological or cognitive theory and a theory
of physiological implementation, we can ask, does the notion of distrib-
uted memory have anything to offer us in terms of an understanding of
human cognition?

In Chapter 3, several of the attractive properties of distributed
models are described, primarily from a computational point of view.
This chapter addresses the relevance of distributed models from the
point of view of the psychology of memory and learning. We begin by
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considering a dilemma that faces cognilive theories of learning and
memaory, concerning the representations of general and specific infor-
mation. Then we show how a simple version of a distributed model
circumvents the dilemma. We go on to show how this model can
account for a number of recent findings about the learning and
representation of general and specific information. We end by consid-

" ering some other phenomena that can be accounted for using a distrib-

uted model, and we consider a limitation of the model and ways this
limitation might be overcome.

The Dilemma

One central dilernma for theores of memory has to do with the
choice to represent general or specific information. On the one hand,
human memory and human learning seem to rely on the formation of
summary representations that generalize from the details of the specific
experiences that gave rise to them. A large number of experiments,
going back to the seminal findings of Posner and Keele (1968) indicate
that we appear to extract what is common to a set of experiences. On
the basis of this sort of evidence, a number of theorists have proposed
that memory is largely a matter of generalized representations, either
abstracted representations of concepts discarding irrelevant features, or
prototypes—representations of typical exemplars (Rosch, 1975). On
the other hand, specific events and experiences play a prominent role in
memory. Experimental demonstrations of the importance of specific
slimulus events even in tasks which have been thought to involve
abstraction of a concept or rule are now legion. Responses in categori-
zation tasks (Brooks, 1978; Brooks, Jacoby, & Whittlesea, 1985; Medin
& Schaffer, 1978), perceptual identification tasks (Jacoby, 1983a, 1983b:
Whittlesea, 1983), and pronunciation tasks (Glushko, 1979) all seem 1o
be quite sensitive to the congruity between particular training stimuli
and particular test stimuli, in ways which most abstraction or prototype
formation models would not expect.

One response to this dual situation has been to propose models in
which apparent rule-based or concept-based behavior is attributed to a
process that makes use of stored traces of specific events or specific
exemplars of the concepts or rules. According to this class of models,
the apparently rule-based or concept-based behavior emerges from what
might be called a conspiracy of individual memory traces or from a
sampling of one from the set of such traces. Models of this class
include the Medin and Schaffer (1978) context model, the Hintzman
(1983) muitiple trace model, and the Whitllesea (1983) episode model.
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This trend is also exemplified by our interactive activation model of
word perception and an extension of the interactive activation model to
generalization from exemplars (McClelland, 1981). Both of these
models were described in Chapter L.

One feature of some of these exemplar models is very troublesome.
Many of them are internally inconsistent with respect 10 the issue of
abstraction. Thus, though our word percsption model assumes that
linguistic rules emerge from a conspiracy of partial activations of Eiem:-
tors for particular words, thereby eliminating the need for abstraction of
rules, the assumption that there is a single detector for each word
implicitly assumes that there is an abstraction process that 1u1:nps each
occurrence of the same word into the same single detector unit. Thus,
the model has its abstraction and creates it too, though at somewhat
different levels. ; .

One logically coherent response to this inconsistency 1s lo simply say
that each word or other representational object is itself the fest_llt of a
conspiracy of the entire ensemble of memory traces of T.hg: different
individual experiences we have had with the object. We will call this
view the enumeration of specific experiences view. It is EXEIII]',':I-lIfiE:FI most
clearly by Jacoby (19832, 1983b), Hintzman (1983), and Whittlesea
“?Eihc papers just mentioned demonstrate, enumemtiqq muﬁels._ can
work guite well as an account of quite a number of empirical findings.
However, there still seems to be a drawback. Enumeration models
seem to require an unlimited amount of storage capacity, as we[l as
mechanisms for searching an almost unlimited mass of data. Thjs is
especially true when we consider that the primitives out of which we
normally assume each experience is built are themselves based on gen-
eralizations. For example, a word is a sequence of letters, and a sen-
tence is a sequence of words. Are we Lo believe that all these units are
mere notational conveniences for the theorist, and that every event s
stored separately as an extremely rich (obviously structured) represen-
tation of the event, with no condensation of details? ‘

Thus, the dilemma remains. It would appear that enumeration
models cannot completely eliminate the need for some kind of abslrgc—
live representation in memory. Yet the evidence that the characteris-
tics of particular events influence memory performance cannot be
disposed of completely. -

One response to this dilemma is to propose the explicit storage of
both general and specific information. For example, Elio and L R
Anderson (1981) have proposed just such a model. In this mgde.l.
memory traces are stored in the form of productions, and mechanisms
of production generalization and differentiation form summary
representations and refine them as necessary during learning.
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Distributed models suggest another alternative. As we shall demon-
strate in this chapter, & very simple distributed model, relying on a very
simple leaming rule—the delta rule—is capable of accounting for
empirical data that has been taken as suggesting that we store summary
representations (e.g., prototypes) as well as data that has been taken as
suggesting that memory consists of an enumeration of specific experi-
erces. :

The specific model we consider does have a limitation that it shares
with enumeration models: It relies on a fixed set of representational
primitives. However, we shall argue that natural extensions of the
model which overcome this limitation are now possible. Though we do
not explore these extensions in detail, we do consider some issues that
will arise if these extensions are incorporated.

A DISTRIBUTED MODEL OF MEMORY

The model we shall describe is a member of the class of models dis-
cussed in Chapter 3. In developing the ideas presented here, we were
strongly influenced by the work of J. A. Anderson (e.g.. 1977, 1983;
Anderson, Silversiein, Ritz, & Jones, 1977, Knapp & Anderson, 1984)
and Hinton (1981a). We have adopted and synthesized what we found
to be the most useful aspects of their distinct but related models,
preserving (we hope) the basic spirit of both.

In keeping with the overall enterprise of the book, our distributed
model is a2 model of the microstructure of memory. It specifies the
internal workings of some of the components of information processing
and memory, in particular those concerned with the retrieval and use of
prior experience. The model does not specify in and of itself how these
acts of retrieval and use are planned, sequenced, and organized into
coherent patterns of behavior. Some thoughts about ways this might be
done may be found in Chapters § and 14,

General Properties

Our model shares a number of basic assumptions about the nature of
the processing and memory system with most other distributed models.
In particular, the processing system is assumed to consist of a highly
interconnected network of units that take on activation values and com-
municate with other units by sending signals modulated by weights
associated with the connections between the units, according to the
principles laid out in Chapter 2. Sometimes we may think of the units
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as corresponding to particular representational primitives, but they need
not. For example, even what we might consider to be a primitive
feature of something, like having a particular color, might be a patiern
of activation over a collection of units,

Modular structure. We assume that the units are organized into
modules. Each module receives inputs from other modules; the units
within the module are richly interconnected with each other, and they
send outputs to other modules. Figure 1 illustrates the internal struc-
ture of a very simple module, and Figure 2 illustrates some hypotheti-
cal interconnections between a number of modules. Both figures
grossly under-represent our view of the numbers of units per module
and the number of modules. We would imagine that there would be
thousands to millions of units per module and many hundred or
perhaps many thousand partially redundant modules in anything close
to a complete memory system.

The state of each module represents a synthesis of the states of all of
the modules it receives inputs from. Some of the inputs will be from
relatively more sensory modules, closer to the sensory end-organs of
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FIGURE 1. A simple information processing module, consisting of a small ensemble of
eight processing units, Each unit receives inpuls from other modules {indicated by the
single input impinging of the input line of the unit from the left; this can stand for a
number of converging input signals from several units owside the module) and sends
outputs 1o other modules (indicated by the rightward output line from each unit). Each
unit alse hes a modifiable connection to all the other units in the module, as mdicated by
the branches of the output lines that loop back onlo the inpul lines leading inlo each unit.
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FIGURE I An illusirative diagram showing several modules and interconnactions
among them. Arrows between modules simply indicate that some of the wnils in one
module send inputs o some of the units in the other. The 2xact number and organiza.
o of modules is, of course, unknown; the figure is simply intended to be suggestive,

one modality or another. Others will come from relatively more
abstract modules, which themselves receive inputs from and send out-
puts to other modules placed at the abstract end of several different
meoedalities. Thus, each module combines a number of different sources
of information.

Units play specific roles within patterns. A pattern of activation only
counts as the same as another if the same units are involved. The rea-
son for this is that the knowledge built into the system for re-creating
the patterns is built into the set of interconnections among the units, as
we will explain below, For a pattern to access the right knowledge, it
must anise on the appropriate units. [n this sense the units play specific
roles in the patterns.

Obvicusly, a system of this sorl is useless without sophisticated per-
¢eptual processing mechanisms at the interface between memory and
the outside world, so that input patterns arising at different locations in
the world can be mapped into the same set of units internally. The
scheme proposed by Hinton (1981b; see Chapter 4) is one such
mechanism. Chapter 16 describes mechanisms that allow several dif-
ferent patterns to access the same set of units at the same lime: in the
present chapter, we restrict attention to the processing of one pattem
at a time.
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Relation to Basic Concepts in Memory

Several standard concepts in the memory literature map easily onto
corresponding aspects of distributed memory models. Here we consider
three key concepts in memory and their relation to our distributed
memaory model.

Mental state as pattern of activation. In a distributed memory $ys-
lem, 4 mental state is a pattern of activation over the unils in some
subset of the modules. The patterns in the different modules capture
different aspects of the content of the mental states in a kind of a par-
tially overlapping fashion. Altemative mental slates are simply alterna-
tive patterns of activation over the modules. Information processing is
the process of evolution in time of mental states.

Memory traces as changes in the weights. Patterns of activation
come and go, leaving traces behind when they have passed. What are
the traces? They are changes in the strengths or weights of the connec-
tions between the units in the modules.! As we already said, each
memory trace is distributed over many different connections, and each
connection participates in many different memory traces. The traces of
different mental states are therefore superimposed in the same set of

weights.

Retrieval as reinstatement of prior pattern of activation. Retrieval
amounts to partial reinstatement of a mental state, using a cue which is
a fragment of the original state. For any given module, we can see the
cues as originating from outside of it. Some cues could arise ultimately
from sensory input, Others would arise from the results of previous
retrieval operations, fed back to the memory systern under the control
of a search or retrieval plan. It would be premature to speculate on
how such schemes would be implemented in this kind of a model, but
it is clear that they must exist.

Detailed Assumptions

In the rest of our presentation, we will be focusing on operations that
take place within a single module. This obviously oversimplifies the
behavior of a complete memory system since the modules are assumed

! These traces are not, of gourse, to be confused with the continuing pattern of activa-
tign stored in the Trace processing structure discussed in Chapter 15,
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to be in continuous interaction. The simplification is justified, how-
ever, in that it allows us to examine some of the basic properties of dis-
tributed memory systems which are visible even without these interac-
tions with other modules.

Let us look, therefore, at the internal structure of one very simple
module, as shown in Figure 1. Again, our image is that in a system
sufficient for real memories, there would be much larger numbers of
units. We have restricted our analysis to small numbers simply to illus-
trate basic principles as clearly as possible; this also helps 1o keep the
running time of simulations in bounds.

Continwous activation values. The units used in the present model
are fairly standard units, taking on continuous activation values in the
range from —1 to +1. Zero is in this case a neutral resting value,
toward which the activations of the units tend Lo decay.

Unlike the models described in some of the previous chapters in this
section, there is no threshold activation wvalue. This means that both
positive and negative activations influence other units.

Inputs, outputs, and internal connections. Each unit receives input
from other modules and sends output to other modules. For simplicity,
we assume that the inputs from other modules occur at connections
whose weights are fixed. In the simulations, we also treat the input
from outside the module as a siatic patlern thal comes on suddenly,
ignoring for simplicity the fact that the input pattern evolves in time
and might be affected by feedback from the module under study.
While the input to each unit might arise from a combination of sources
in other modules, we can lump the external input to each unit into a
single real valued number representing the combined effects of all com-
potents of the external input. In addition to extramodular connections,
each unit is connected to all other units in the module via a weighted
connection. The weights on these connections are modifiable, as
described below. The weights can take on any real values: positive,
negative, or zero. There is no connection from a unit onto itself.

An input pattern is presented at some point in time over some or all
of the input lines 10 the module and is then left on for several ticks,
until the pattern of activalion it produces settles down and stops
changing.

The processing cycle. The model is a synchronous model, like all of
the other madels in this section. On each processing cycle, each unit
determines its net input, based on the external input to the unit and
the activations of all of the units at the end of the preceding cycle
modulated by the weight coefficients which determine the strength and
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direction of each unit’s effect on every other unit. Then the activations
of all of the units are updated simultaneously. . .

The net input to a unit consists of two parts, the external input, ans-
ing from outside the module, and the internal input, arising from the
other units in the module. The internal input to unit £, i, is then just
the sum of all of these separate inputs, each weighted by the appropri-
ate connection strength;

i, = La;wy,.
J

Here, j ranges over all units in the module other than i, g, is the
activation of unit j at the end of the previous cycle, and w;; is the
weight of the connection to unit / from unit j. This sum 15 then added
to the external input to the unit, anising from outside the module, 1o
obtain the net input 1O unit §, nex;:

ﬂffr' - if + &

where g, is just the lumped extemnal input to unit /.

Activations are updated according to a simple nonlinear "squashing”
function like the one we have used in several other chapters. If the net
input is positive, the activation of the unit is incremented by an amount
proportional to the distance left to the ceiling activation level of +1.0.
If the net input is negative, the activation is decremented by an amount
proportional o the distance left to the floor activation level of —1.0.
There is also a decay factor which tends to pull the activation of the
unit back toward the resting level of 0. For unit i, if net, > 0,

ﬁﬂ‘: ] .E"I':"f' (1 = ﬂj} i Dﬂ_r- (I}
If ner; < 0,
ﬂ.d’,- = Erwf,-{a; — =1} - Dﬂ,-. {2}

In these equations, £ and D are global parameters that apply to all
units and set the rates of excitation and decay, respectively. The term
a, is the activation of unit i at the end of the previous cycle, and Ag; is
the change in a;; that is, it is the amount added to (or, if negative, sub-
tracted from) the old value 4, to determine its new value for the next
cycle.

The delails of these assumptions are quite unimportant to the
behavior of the model. Many of the same results have been obtained
using other sigmoid squashing functions. The fact that aqtivati:_ons
range from —1 to +1 is, likewise, not very relevant, lhoug?; if activa-
tions ranged from O 1o 1 instead, it would be necessary to Incorporate
threshold terms in addition to the connection strengths to get the
maodel to produce roughly the same results.
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Given a fixed set of inputs to a particular unit, its activation level
will be driven up or down in response until the activation reaches the
point where the incremental effects of the input are balanced by the
decay. In practice, of course, the situation is complicated by the Fact
that as each unit’s activation is changing it alters the input to the
others. Thus, it is necessary o run the simulation to see how the sys-
tem will behave for any given set of inputs and any given set of
weights. In all the simulations reported here, the model is allowed to
run for 50 cycles. which is considerably more than enough for it to
achieve a stable pattern of activation over all the units,

Memory traces. The memory trace of a particular pattern of activa-
tipn is a set of changes in the entire set of weights in the module. We
call the whole set of changes an increment 10 the weights. Afier a stable
pattern of activation is achieved, weight adjustment takes place. This is
thought of as occurring simultanegusly for all of the connections in the
module,

We use the delta rule to determine the size and direction of the
change at each connection. This learning rule is explored extensively in
Chapters 2, %, and 11, Here, we consider it from the point of view of
indicating how it implements, in a direct and simple way, the storage of
the connection information that will allow a module to re-create com-
plete patierns of activation orniginally produced by external input when
only a part of the patlern is presented as a "retrieval™ cue.

To achieve pattern completion, we want to set up the intemnal con-
nections among the units in the module so that when part of the pat-
lern is presented, the intemal connections will tend 1o reproduce the
rest. Consider, in this light, a particular pattern of activation, and
assume for the moment that in this pattem the exiemal input to a par-
ticular unit j is excitatory. Then we will want the intenal input from
other units in the module to tend to excite unit j when they tlake on
the aectivation values appropriate for this particular pattern. In general,
what we nead to do for each unit is to adjust the weights so that the
internal connections in the module will tend to reproduce the external
mput to that unit, given that the rest of the units have the activation
values appropriate for this particular pattern.

The first step in weight adjustment is to see how well we are already
doing. If the network is already doing what it should, the weights do
not need 1o be changed. Therefore, for each unit i, we compule the
difference &, between the external input to the unit and the net internal
input 1o the unit from other units in the module:

5; =g — .
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In determining the activation value of the unit, we added the ex!emal
input together with the internal input, Now, in adjusting thg u:ﬂgh_ts,
we are taking the difference between these two terms. This implies
that the unit must be able to aggregate all inputs for purposes of deter-
mining its activation, but it must be able to distinguish between exter-
nal and intemal inputs for purpeses of adjusting its weights.

Let us consider the term §; for a moment. If it is positive, the inter-
nal input is not activating the unit enough. If negative, it is activating
the unit too much. If it is zero, everything is fine and we do not wanl
to change anything. Thus, 5, determines the magnitude and direction
of the overall change that needs to be made in the internal input to unit
i. To achieve this overall effect, the individual weights are then
adjusted according to the following formula:

ﬁ.'lﬂ:j"ﬂa,'ﬂ;- {3]

The parameter 7 is just a global strength parameter which regulales the
overall magnitude of the adjusiments of the weights: Aw;,; is the change
in the weight to i from j.

The delta rule, given by Equation 3, has all the intended conse-
quences. That is, it tends to drive the weights lo the right values to
make the internal inputs to a unit match the external inputs. For
example, consider the case in which §, is positive and a; is positive. In
this case, the value of &; tells us thal unit i is not receiving enough
excitatory input, and the value of a; tells us that unit j has positive
activation. In this case, the delta rule will increase the weight from j to
i. The result will be that the next lime unil j has a positive activation.
its excitatory effect on unit i will be increased, thereby reﬂucing_ 8.
Similar reasoning applies to cases where §; is negative, a; is negauve,
or both are negative. Of course, when either §; or g; 15 zero, w;, Is not
changed. In the first case, there is no error to compensate for; in Ithe
second case, a change in the weight will have no effect the next time
unit j has the same activation value.

What the delta rule can and cannot do. Several important poinis
about the delta rule have been discussed in Chapters 2, &, and 11.
Here we consider just those that are most relevant to our present pur-
poses. Basically, the most important result is that, for a st of patterns
that we present repeatedly to a module, if there is a set of weights that
will allow the system to reduce & to 0 for each unit in each patiern, this
rule will find it through repeated exposure to all of the members of the
set of patterns. However, it is important to note that the exislence of a
set of weights that will allow & to be reduced to 0 is not guaranteed, but
depends on the structure inherent in the set of patterns that the model
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is given to learn. To be perfectly learnable by our model, the patterns
must conform to the following finear predictability constraint:

Over the entire set of patterns, the external input to each unit
must be predictable from a linear combination of the activa-
tions of every other unit.

While this limitation’is severe, it is important to realize that the extent
to which a set of patterns satisfy the linear predictability constraint
depends on the way the set of patierns is represented. From this point
of view, we must distinguish clearly between the theoretical description
of a set of stimuli presented to 2 human subject for processing and the
patterns of activation produced in some module deeply embedded in
the cognitive system. As a rule of thumb, an encoding which treats
each dimension or aspect of a stimulus separately is unlikely to be suffi-
cient: what is required is a comtext sensitive or conjunctive encoding,
such that the representation of each aspect is colored by other aspects.
A fuller discussion of this issue is presenied in Chapter 3. we also
return to it below in considering some recent evidence obtained by
Medin and Schwanenflugel {1981},

No hidden unirs. As explained in Chapters 7 and 8, the linear pred-
ictability constraint arises from the fact that the present model contains
no hidden units. If hidden units were incorporated, the generalized
delta rule described in Chapter 8 could be used to train the connections
into these units, thereby allowing the model to form new representa-
lional primitives Lo overcome the linear predictability constraint when it
arises. At the end of the chapter, we consider the introduction of hid-

den units and the effects that this would have on the behavior of the
model.

Decay in the increments to the weights. We assume that each trace
or increment undergoes a decay process, though the rate of decay of
the increments is assumed to be much slower than the rate of decay of
patterns of activation. Following a number of theorists (eg, Wickel-
gren, 1979), we imagine that traces at first decay rapidly, but then the
remaining portion becomes more and more resistant to further decay.
Whether it ever reaches a point where it is no longer decaying at all, we
do not know. The basic effect of this assumption is that individual
inputs exert large shori-term effects on the weights, but, after they
decay, the residual effect is considerably smaller. The fact that each
increment has its own temporal history increases the complexity of
computer simulations enormously. In many of the simulations, there-

fore, we will specify simpler assumptions to keep the simulations
tractable.
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Parameters and details. In simulations using the model. it is impor-
tant to keep the net input to each unit on each processing cycle rela-
tively small, so that activations do not jump to0 suddenly and go out of
range. For this purpose we set the parameters £ and D equal to .15, Tt
is also important to reduce w in proportion to the number of _mEemaI
inputs to each unit. The number of internal inputs to each u!1it is just |
minus the number of units, since each unit receives an mput_fmm
every other unit. Thus, if we define n = §/(n—1), where n is the
number of units, then the rate of learning, in terms of the reduction in
&, will be about the same for all values of n_ Instability can result if §
is set greater than 1.0. Generally a value of 85 was used in the follow-
ing simulations.

Mustrative Examples

In this section, we describe a number of simulations to illustrate
several key aspects of the model’s behavior. We wish to demonstrate
several points:

1. The model can extract what appears to be the protolype or cen-
tral tendency of a set of patterns, if the patterns are in fact ran-
dom distortions of the same base or prototype pattern,

2. The model can do this for several different patterns, using the
same set of connections to store its knowledge of all the proto-

Lypes.

3. This ability does not depend on the exemplars being prﬁenied
with labels so that the model is given the where-with-all to
keep them straight.

4. Representations of specific, repeated exemplars can coexist in
the same set of connections with knowledge of the prototype.

Learning a prototype from exemplars. To illustrate the first point,
we consider the following hypothetical situation. A little boy sees many
different dogs, each only once and each with a different name. All the
dogs are a little different from each other, but in general ﬂ'lJ_ere is a pat-
tern which represents the typical dog—each one is jusl a dlffﬂl".’.’l"ll dis-
tortion of this prototype. (We are not claiming that the dogs in the
world have no more structure than this; we make this assumption for
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purposes of illustration only). For now we will assume that the names
of the dogs are all completely different. We would expect, given this
expenence, that the boy would learn the prototype of the category,
even without ever seeing any particular dog that matches the prototype
directly (Posner & Keele, 1968, 1970, J. A. Anderson, 1977, applies an
earlier version of a distributed medel to this case). That is, the proto-
type will seem as familiar as any of the exemplars, and the boy will be
able to complete the patiern corresponding to the prototype from any
part of it. He will not, however, be very likely to remember the names
of each of the individual dogs, though he may remember the most
recent ones.

We model this situation with a module consisting of 24 units, We
assume that the presentation of a dog produces a visual pattern of
activation over 16 of the units in the hypothetical module (the 9th
through 24th, counting from left to right). The name of the dog pro-
duces a pattemn of activation over the other 8 units (Units 1 to 8,
counting from left 1o right).

Each visual pattern, by assumption, is a distortion of a single proto-
type. The prototype used for the simulation simply had a random
series of +1 and —1 values. Each distortion of the prototype was made
by probabilistically flipping the sign of randomly selected elements of
the prototype pattern. For each new distorted pattern, each element
has an independent chance of being flipped, with probability 2. Each
name pattern was simply a random sequence of +1s and —1s for the
eight name units, Each encounter with a new dog is modeled as a
presentation of a new name pattern with a new distortion of the proto-
type visual pattern. Fifty different trials were run, each with a new
name-pattern/ visual-pattern pair.

For each presentation, the pattern of activation is allowed to stabilize,
and then the weights are adjusted as described above. The increment
lo the weights is then allowed to decay considerably before the next
input is presented. For simplicity, we assume that before the next pat-
tern is presented, the last increment decays to a fixed small proportion
(5%) of its initial value and thereafter undergoes no further decay.

What does the model leam? The module acquires a set of weights
which is continually buffeted about by the latest dog exemplar, but
which captures the prototype dog quite well. Waiting for the last incre-
ment 1o decay to the fixed residual yields the weights shown in
Figure 3.

These weights capture the correlations among the values in the pro-
totype dog pattern quite well. The lack of exact uniformity is due to
the more recent distortions presented, whose effects have not been
correcled by subsequent distortions. This is one way in which the
model gives priority to specific exemplars, especially recent ones. The
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Protutype pattem:
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FIGURE 3. Weights acquired in learning from distoried exemplars of 2 prololype. {The
prolotype pattern is shown above the weight matrix. Blank entries correspond 1o weights
with absolule values less than 00 dots correspond to absolule values less than 06
plusees or minuses are used for weights with larger absolute values.)

effects of recent exemplars are particularly strong, of course, before
they have had a chance to decay. The module can complete the proto-
type quite well, and it will respond more strongly to the prototype than
to any distortion of it. It has, however, learned no particular Felauun
between this prototype and any name pattern since a totally dlffﬂleﬂt
random association was presented on each trial. If the pattern of activa-
tion on the name units had been the same in every case (say, each dog
was just called "dog"), or even in just a reasonable fraction of the cases,
then the module would have been able to retrieve this shared name
patiern from the prototype of the visual pattern and the prototype pat-
tern from the name: we will see cases of this kind of behavior in the
next section.

Multiple, nonorthogonal prototypes. In the preceding simulation, we
have seen how the distributed model acts as a sort of signal averager,
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finding the central tendency of a set of related patterns. In and of itself
this is an important property of the model, but the importance of this
properly increases when we realize that the model can average several
different patlerns in the same composite memory trace. Thus, several
different prototypes can be stored in the same set of weights. This
property is important because it means that the model does not fall into
the trap of needing- to decide which category to put a pattem into
before knowing which prototype to average it with. The acquisition of
the different prototypes proceeds without any sort of explicit categoriza-
tion. If the patterns are sufficiently dissimilar (i.e., orthogonal), there
15 no interference among them at all. Increasing similarity leads to
increased confusability during learning, but eventually the delta rule
finds a set of connection strengths that minimizes the confusability of
similar patterns. These points are discussed mathematically in Chapler
11; here we illustrate this through a simulation of the following
hypothetical situation,

Let us suppose that our little boy sees different dogs, different cats,
and different bagels in the course of his day-to-day experience. First,
let’s consider the case in which each experience with a dog, a cat, or a
bagel is accompanied by someone saying "dog." "cal” or “bagel” as
appropriate.

The simulation analog of this situation involved forming three
"visual" prototype patterns of 16 elemenits: two of them (the one for
dog and the one for cat) somewhat similar to each other (r = .5) and
the third (for the bagel) orthogonal to both of the other two. Paired
with each visual pattern was a name pattern of eight elements. Fach
name pattern was orthogonal to both of the others, Thus, the proto-
lype visual pattern for cat and the prototype visual pattern for dog were
similar to each other, but their names were not related,

Stimulus presentations involved presentations of distorted exemplars
of the name/visual pattern pairs to a module like the one used in the
previous simulation. This time, both the name patten and the visual
pattern were distorted, with each element having its sign flipped with
an independent probability of .1 on each presentation. Fifty different
distortions of each name/visual pattern pair were presented in groups
of three, consisting of one distortion of the dog pair, one distortion of
the cat pair, and one distortion of the bagel pair. Weight adjustment
occurred after each presentation, with decay to a fixed residual before
each new presentation.

Al the end of training, the module was tested by presenting each
name pattern and observing the resulting pattern of activation over the
visual units, and by presenting each wisual pattem and observing the
pattern of activation over the name units. The results are shown in
Table 1. In each case, the model reproduces the correct completion for
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TABLE 1

Visual Pariern

RESULTS OF TESTS AFTER LEARNING THE DOG. CAT, AND BAGEL PATTERNS

Mame Pallern

Pattern lor

dog protolype

Response 1o

4144 +d—d 4 —d —4 +4 +d HA +3 #2444 -]

dog name

I RIEY Ty P S S (DR |

Response 10

dig visual pallern

cal protolype
Response o

Pattern Tor

4 =4 kA 4 =4 A

ST, R

+4 —3 +4 +4d

cil mkie

5 FA —4 =544 +4 =4 ~4

cul visual putlern

Response to

= Foik

=t = =+ * ¥ + =

4 Gk

bagel protolype

Response 1o

Pattern for

33 44 =4 Fd —d 4 b4 =4 b 4 =4 D ]

bagel name
Response 1o

$4 —4 —4 +d +4 -4 —4 +4

bigel visual pattern

Mote: Decimal points have been suppressed for clarily; thus, an entry of +4 represents un aclwation viluc af + 4.
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the probe, and there is no apparent contamination of the "cat” pattern
by the "dog" pattern, even though the visual patterns are both similar.

In general, pattern completion is a matter of degree. Below, in simu-
lating particular experimental results, we will introduce an explicit
measure of the degree to which a particular pattern is active in the units
of a module, For now, it is sufficient simply to note that the sign of all
of the elements is correct; given this, the average magnitude of the
elements gives an approximate measure of the "degree™ of pattern
reinstatement,

In a case like the present one, in which the patterns known to the
model are not all orthogonal, the values of the connection strengths
that the model produces do not necessarily have a simple interpretation.
Though their sign always corresponds to the sign of the correlation
between the activations of the two patterns, their magnitude is not a
simple reflection of the magnitude of their correlation, but is influ-
enced by the degree to which the model is relying on this particular
comrelation to predict the activation of one unit from the others. Thus,
in a case where two units (call them i and j) are perfectly correlated,
the strength of the connection from ¢ to j will depend on the number
of other units whose activations are correlated with ;. If i is the only
unit correlated with J, it will have to do all the work of "predicting” j,
s0 the weight will be very strong; on the other hand, if many units
besides / are correlated with f, then the work of exciting /i will be
spread around, and the weight between / and ; will be considerably
smaller. The situation is exactly the same as the one thal arises in
linear regression: if several variables predict another, they share the
weight, The weight malrix acquired as a result of learning the dog, cat,
and bagel patterns (Figure 4) reflects these effects. For example,
across the set of three prototypes, Units 1 and 5 are perfectly corre-
lated, as are Units 2 and 6. Yet the connection from Unit 2 to Unit &
is stronger than the connection from Unit 1 to Unil 5 (these connec-
tions are *d in the figure). The reason for the difference is that Unit 2
is one of only three units which correlate perfectly with Unit 6, while
Unit 1 is one of seven units which correlate perfectly with Unit 5.2

Thus far we have seen that several prototypes, not necessarily
orthogonal, can be stored in the same module without difficulty, It is
true, though we do not illustrate it, that the model has more trouble
with the cat and dog visual patierns earlier on in training, before learn-
ing has essentially reached asympiotic levels, as it has by the end of 50

¥ In Figure 4, the weights do notl reflect these conirists perfectly in every case because
the noise introduced inte the learning heppens, by chance, 1o alter some of the correls-

tions present in the prodolype patterns,  Averaged over time, though, the weights will
conform to their expected values.
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FIGURE 4. Weights acquired n leaming the three prototype patierns shown. {Blanks in
the matrix of weights correspond Lo weights with absolule values less than or equal 1o
+5 stands for a weight of 4+ .25 The gap in the horizontal and vertical dimensions is
used o separate the name figld from the visual pattern field.)

cycles through the full set of patierns, And, of course, even at the end
of learning, il we present as a probe a part of the visual patlern that
does not differentiate between the dog and the cat, the model will pro-
duce a blended response. Both of these aspects of the model seem gen-
erally consistent with what we should expect from human subjects.
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Category learning without labels. An important further fact about
the model is that it can learn several different visual patterns, even
without the benefit of distinct identifymg name patterns during learn-
ing. To demonstrate this we repeated the previous simulation, simply
replacing the name patterns with Os. The model still learns about the
internal structure of the visual patterns so that, after 50 cycles through
the stimuli, any unique subpart of any one of the patterns is sufficient
to reinstate the rest of the corresponding pattern correctly. This aspeet
of the model’s behavior is illustrated in Table 2. Thus, we have a
model that can, in effect, acquire a number of distinct categories, sim-
ply through a process of incrementing connection strengths in response
1o each new stimulus presentation. Noise, in the form of distortions in
the patterns, is filtered out. The model does nol require a name or
other guide to distinguish the pattems belonging to different categories.

Coexistence of the prototype and repeated exemplars. One aspect of
our discussion up to this point may have been slightly misleading. We
may have given the impression that the model is simply a prototype
extraction device. It is more than this, however; it is a device that cap-
tures whatever structure is present in a set of patlerns (subject, of
course, 1o the linear predictability constraint). When the set of patterns
has a prototype structure, the model will act as though it is extracting
protoiypes; but when it has a different structure, the model will do its
best 10 accommodate this as well. For example, the model permits the
coexistence of representations of prototypes with representations of par-
ticular, repeated exemplars.

TABLE 2

RESULTS OF TESTS AFTER LEARNING
THE DOG. CAT, AND BAGEL PATTERNS WITHOUT NAMES

Dog visual pattern; S R . et i . ST SR S
Probe: i S
Response: +I-343+F=3-4-3-1+6+5 464543 -2-3=2
Cat visual pattern; Tkt - - - =+ =% - 4+ 4+ -+
Probe: e e
Response; #3-34343-3-3-3-3+6-5+6-5+3+2-1+2
Bagel visual pattern: + + — 4+ — + % = + — — 4+ + + 4+ =
Probe: e
Responssa: FI+3 -4 +3 =343 43 -3 +6—b6=6+6+3+3+3=3
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As an illustration of this point, consider the following situation. Let
us say that our little boy knows a dog next door named Rover and a
dog at his grandma’s house named Fido. And let’s say that the little
boy goes to the park from time to time and sees dogs, each of which
his father tells him is a dog.

The simulation analog of this involved three different eight-element
name paiterns, one for Rover, one for Fido, and one for dog. The
visual pattern for Rover was a particular randomly generated distortion
of the dog prolotype pattern, as was the visual pattern for Fido. For
the dogs seen in the park, each one was simply a new random distortion
of the prototype. The probability of flipping the sign of each element
was again 2. The leaming regime was otherwise the same as in the
dog=cat=bagel example.

At the end of 50 learning cycles, the model was able to retrieve the
visual pattern corresponding 10 either repeated exemplar (see Table 3}
given the associated name as input. When given the dog name paliern
as input, it retrieves the prototype visual pattern for dog. It can also
retrieve the appropriate name from each of the three wvisual patterns.
This is true, even though the visual pattern lor Rover differs from the
visual pattern for dog by only a single element. Because of the special
importance of this particular element, the weights from this element to
the units that distinguish Rover’s name paltern from the the prototype
name pattern are quite strong. Given part of a wvisual paitern, the
model will complete it; if the part corresponds 1o the prototype, then
that is what is completed, but if it corresponds to one of the repeated
exemplars, then that exemplar is completed. The model, then, knows
both the prototype and the repeated exemplars quite well. Several
other sets of prototypes and their repeated exemplars could also be
stored in the same module, as long as its capacity is not exceeded;
given large numbers of units per module, a lot of different patterns can
be stored.

Let us summarize the observations we have made in these several
illustrative simulations, First, our distibuted model is capable of stor-
ing not just one but a number of different patterns. It can pull the
"central tendency” of a number of different patterns out of the noisy
inputs; il can create the functional equivalent of perceptual categories
with or without the benefit of labels; and it can allow representations of
repeated exemplars to coexist with the representation of the prototype
of the categories they exemplify in the same composite memory trace.
The model is not simply a calegorizer or " prototyping” device; rather, it
captures the structure inherent in a set of patterns, whether it be
characterizable by description in terms of prototypes or not, a5 long as
the ensemble of patterns adheres to the linear predictability constraint.

TABLE 3

RESULTS OF TESTS WITH PROTOTYPE AND SPECIFIC EXEMPLAR PATTERNS

Vistal Pattern

Mame Paliern

Patrern for

cdog profolype

Respanse o

54341433 -3 +3 4T KA 4T 443 4 -4

oLy pe name

Rasponss to

45 —d +d -4 45 —4 +4 =4
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The ability to retrieve accurate completions of similar patterns is a
property of the model that depends on the use of the delta leaming
tule. This allows both the storage of different prototypes that are not
orthogonal and the coexistence of prototype representations and
repeated exemplars.

SIMULATIONS OF EXPERIMENTAL RESULTS

Up to this point, we have discussed our distributed model in general
terms and have outlined how it can accommodate both generalization
and representation of specific information in the same network. We
now consider, in the next two sections, how well the model does in
accounting for some recent evidence about the details of the influence
of specific experiences on performance and the conditions under which
functional equivalents of summary representations such as logogens and
prololypes emerge.

Repetition and Familiarity Effects

When we perceive an ilem=—say a word, for example—this experi-
ence has effects on our later performance. [f the word is presented
again within a reasonable interval of time, the prior presentation makes
it possible for us to recognize the word more quickly or from a briefer
presentation.

Traditionally, this effect has been interpreted in terms of units that
represent the presented items in memory. In the case of word percep-
tion, these units are called word detectors or logogens and a model of
repetition effects for words has been constructed around the logogen
concept (Morton, 1979). The idea is that the threshold for the logogen
is reduced every time it “fires” (that is, every time the word is recog-
nized), thereby making it easier to fire the logogen at a later time.
There is supposed to be a decay of this priming effect, with time, so
that eventually the effect of the first presentation wears ofT.

This traditional interpretation has come under serious gquestion of
late, for a number of reasons. Perhaps paramount among the reasons is
the fact that the exact relation between the specific context in which
the priming event occurs and the context in which the test event occurs
makes a huge difference (Jacoby, 1983a, 1983b). Generally speaking,
nearly any change in the stimulus—from spoken to printed, from male
speaker to female speaker, etc.—tends to reduce the magnitude of the
priming effect.
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These facts might easily be taken to support the enumeration of
specific experiences view, in which the logogen is replaced by the entire
ensemble of experiences with the word, with each experience capturing
aspects of the specific context in which it occurred. Such a view has
been championed most strongly by Jacoby (1983a, 1983b).

Our distributed model offers an alternative interpretation. We see
the traces laid down by the processing of each input as contributing to
the composite, superimposed memory representation. Each time a
stimulus is processed, it gives rise to a slightly different memory
trace —either becapse the item itself is different or because it occurs in
a different context that conditions ils representation, The logogen is
replaced by the set of specific traces, but rhe fraces are not kept separate.
Each trace contributes 1o the composite, but the characteristics ol par-
ticular experiences tend nevertheless to be preserved, at least until they
are overnidden by canceling characteristics of other traces. Also, the
traces of one stimulus patlern can coexist with the traces of other
stimuli, within the same composite memory trace,

It should be noted that we are not faulting either the logogen modeal
or models based on the enumeration of specific experiences for their
physiological implausibility here, since these models are generally not
stated in physiological terms, and their authors might reasomably argue
that nothing in their models precludes distributed storage at a physio-
logical level, What we are suggesting is that a model which proposes
explicitly distributed, superpositional storage can account for the kinds
of findings that logogen models have been proposed to account for, as
well as other findings which strain the utility of the concept of the logo-
gen as a psychological construct.

To illustrate the distributed model’s account of repetition priming
effects, we carried out the following simulation experiment. We made
up a set of eight random vectors, each 24 elements long, each one to
be thought of as the prototype of a different recurring stimulus pattern.
Through a series of 10 training cycles using the set of eight vectors, we
construcled a composite memory trace. During training, the model did
not actually see the prototypes, however. On each training presentation
it saw a new random distortion of one of the eight prototypes. In each
of the distortions, each of the 24 elements had its value flipped with a
probability of .1. Weights were adjusted after every presentation and
were then allowed to decay to a fixed residual before the presentation
of the next pattern.

The composite memory trace formed as a result of this experience
plays the same role in our model that the set of logogens or detectors
play in a model like Morton’s or, indeed, the interactive activation
model of word perception. That is, the trace contains information
which allows the model to enhance perception of familiar patterns,
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relative to unfamiliar ones, We demonstrate this by comparing the
activations resulting from the processing of subsequent presentations of
new distortions of our eight familiar patterns, compared to other ran-
dom patterns with which the model is not familiar. The pattern of
activation that is the model’s response to the input is stronger and
grows to a particular level more quickly if the stimulus is 2 new distor-
tion of an old pattern than if it is a new pattern. This effect is illus-
trated in Figure 5.

Pattern activation and response strength. The measure of activation
shown in the figure is the dot product of the pattern of activation over
the units of the module with the stimulus pattern itself, normalized for
the number # of elements in the pattern; For the pattern g we call this
expression a,. In mathematical notation it is just

1
a, = —La.e,lr)
Py A

where / indexes the units in the module, and e,, indexes the extemnal
imput to unit § in pattern p. Essentially, a« represents the degree 1o
which the actual pattern of activation on the units captures the input
pattern. It is an approximate analog of the activation of an individual
unit in models that allocate a single unit to each whole pattern.

To relate these pattern aclivations to response probabilities, we must
assume that mechanisms exist for translating patterns of activation into
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FIGURE 5. Growth of the pattern of activation for aew distortions of familiar and
unfamiliar patterns, The measure of the strength of the pattern of activation is the dot
product of the response pattern with the input vector, See text for an explanation.
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overl responses measurable by an expenimenter, We will assume that
these mechanisms obey the same principles discussed in Chapter 15 for
relating activations to response probabilities, simply replacing the
activations of particular units with the & measure of pattern activation.”

These assumptions finesse an important issue, namely, the mechan-
ism by which a pattern of activation gives rise to a particular response.
A specific mechanism for response generation is described in Chapter
18. For now, we wish only to caplure basic properties any actual
response selection mechanism must have: It must be sensitive to the
input patiern, and it must approximate other basic aspects of response
selection behavior captured by the Luce (1963) choice model.

_ Effects of experimental variables on fime-accuracy curves. Apply-
ing the assumptions described above, we can calculate probability of
correct response as a function of processing cycles for familiar and
unfamiliar patterns. The result for a particular choice of scaling param-
eters is shown in Figure 6. If we assume that performance in a percep-
tual identification task is based on the height of the curve at the point
where processing is cut off by masking (McClelland & Rumelhart,
1981), then familiarity would lead to greater accuracy of perceptual
identification at a given exposure duration. In a reaction time task, if
the response is emitted when its probability reaches a particular thresh-
old activation value, familiarity would lead to speeded responses. Thus,
the model is consistent with the ubiquitous influence of familiarity both
on response accuracy and speed, in spite of the fact that it has no detec-
tors for familiar stimuli,

But what about priming and the role of congruity betwezen the prime
event and the test event? To examine this issue, we carried out a
second experiment. Following learning of eight patterns as in the pre-
vious experiment, new distortions of half of the random vectors previ-
ously leammed by the model were presenled as primes. For each of
these primes, the pattern of activation was allowed to stabilize, and
changes in the strengths of the connections in the model were then
made. 'We then lested the model’s response to (2) the same four dis-
tortions, (b) four new distortions of the same patterns, and (¢} distor-
tions of the four previously learmed patterns that had not been

3 Ome complication arises due 1o the fact that it is not. in general, possible o specily

exactly what the set of aligrnative responses might be for the denominator of the Luee
cheice rule used in the word perception model. For this reason, the strengths of other
responses are represented by a constant C (which stands for the competition), Thus, the
expression for probability of choosing the response appropriate to pattern g is just
ply) =" W (C + %) where &, represents the time average of a,. and k is 4 scil-
ing constant,
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FIGURE 6. Simulated growth of response accuracy over the units in a 24-unit module,
a5 a function of processing cycles, for new dstortions of previously learned pallerns oom-
pared o new distortions of paltems not previously leamed,

presented as primes. There was no decay in the weights over the
course of the priming experiment; if decay had been included, its main
effect would have been to reduce the magnitude of the priming effects,

The results of the experiment are shown in Figure 7. The response
of the model is greatest for the patterns preceded by identical primes,
intermediate for patterns preceded by similar primes, and weakest for
patterns not preceded by any related prime.

Our model, then, appears to provide an account, not only for the
basic existence of priming effects, but also for the praded nature of
priming effects as a function of congruity between prime event and test
event. [t avoids the problem of multiplication of context-specific detec-
tors which logogen theories fall prey to, while at the same time avoid-
ing enumeration of specific experiences. Congruity effects are captured
in the composite memory trace.

The model also has another advantage over the logogen view. [t
accounts for repetition priming effects for unfamiliar as well as familiar
stimuli. When a patiern is presented for the first time, a trace 15 pro-
duced just as it would be for stimuli that had previously been
presented. The result is that, on a second presentation of the same pat-
tern or a new distortion of it, processing is facilitated. The functional
equivalent of a logogen begins to be established from the very first
presentation.

To illustrate the repetition priming of unfamiliar patterns and to
compare the results with the repetition priming we have already
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FIGURE 7. Response probability as a function of exposure time, lor patterns preceded
by identscal primes. similar primes, or no related prime.

observed for familiar patterns, we carried out a third experiment. This
time, after leaming eight patterns as before, a priming session was run,
in which new distortions of four of the familiar patterns and distortions
of four new patterns were presented. Then, in the test phase, 16
stimuli were presented: New distortions of the primed, familiar pat-
temns; new dislorlions of the unprimed, familiar patterns; new distor-
tions of the primed, previously unfamiliar patierns; and finally, new
distortions of four patterns that were neither primed nor familiar. The
results are shown in Figure 8. What we find is that long-term familiar-
ity and recent priming have approximately additive effects on the
asymptotes of the time-accuracy curves. The time to reach any given
activation level shows a mild interaction, with priming having slightly
more of an effect for unfarniliar than for familiar stimuli.

These results are consistent with the bulk of the findings concerning
the effects of pre-experimental familiarity and repetition in a recem
series of experiments by Feustel, Shiffrin, and Salasoo (1983) and
Salasoo, Shiffrin, and Feustel (1985). They found that pre-
experimental familiarity of an item (word vs. nonword) and prior expo-
sure had this very kind of interactive effect on exposure time required
for accurate identification of all the letters of a string, at least when
words and nonwords were mixed together in the same lists of materials.

A further aspect of the results reported by Salasoo, Shiffrin, and
Feustel is also consistent with our approach. In one of their experi-
ments, they examined the threshold for accurate identification as a
function of number of prior presentations, for both words and
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pseudowords, While thresholds were mitially elevated for pseudo-
words, relative to words, there was a rather rapid convergence of the
thresholds over repeated presentations, with the point of convergence
coming at about the same place on the curve for two different versions
of their perceptual identification task (Salasoo et al., 1983%). Our
model, likewise, shows this kind of convergence effect, as illustrated in
Figure 9.

There is one finding by Salasoo et al. (1983) that appears at first
glance to support the view that there is some special process of unit
formation that is distinct from the priming of old units. This is the fact
that after a year belween training and testing, performance with pseu-
dowords used during training is indistinguishable from performance
with words, but performance with words used during training shows no
residual benefit compared to words not previously used. The data cer-
tainly are consistent with the view that training experience made the
pseudowords into lasting perceptual units at the same time that it pro-
duced transitory priming of existing units. We have not attempted to
account for this finding in detail, but we doubt that il is inconsistent
with a distributed model. In support of this, we offer one reason why
repetition effects might seem to persist longer for pseudowords rather
than for words in the Salasoo et al. experiment. For pseudowords, a
strong association would be built up between the item and the learning
contex! during initial training. Such associations would be formed for
words, but because these stimuli have been experienced many times
before and have already been well learned, smaller increments in
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connection strengths are formed for these stimuli during training, and
thus the strength of the association between the item and the learning
context would be less.

If our interpretation is correct, we would expect to see a disadvantage
for pseudowords relative to words if the testing were carried out in a
situation which did not reinstate the mental stale associated with the
original leaming experience since for these stimuli much of what was
learned would be tied 10 the specific learning context. Such a predic-
tion would appear to differentiate our account from any view thal pos-
tulated the formation of an abstract, context-independent logogen as
the hasis for the absence of a pseudoword decrement effect,

Representation of General and Specific Information

In the previous section, we cast our distributed model as an alterna-
tive to the view thal familiar patlerns are represented in memory either
by separate detectors or by an enumeration of specific experiences. In
this section, we show that the model provides alternatives to both
abstraction and enumeration models of leaming from exemplars of
prolotypes.

Abstraction models were originally motivated by the finding that sub-
jects occasionally appeared to have learned better how to categorize the
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prototype of a set of distorted exemplars than the specific exemplars
they experienced during learning (Posner & Keele, 1968). However,
pure abstraction models have never fared very well since there is nearly
always evidence of some superiority of the particular training stimuli
over other stimuli equally far removed from the prototype. A favored
madel, then, is one in which there is both abstraction and memory for
particular training stimuli.

Recently, proponents of models involving only enumeration of
specific experiences have noted that such models can account for the
basic fact that abstraction models are primarily designed to account
for—enhanced response to the prototype, relative to particular previ-
ously seen exemplars, under some conditions—as well as failures to
obtain such effects under other conditions (Hintzman, 1983; Medin &
Schaffer, 1978). In evaluating distributed models, then, it is impeortant
to see if they can do as well. J. A. Anderson (1977) has made impor-
tant steps in this direction, and Knapp and J. A. Anderson (1984) have
shown how their distributed model can account for many of the details
of the Posner-Keele experiments. Recently, however, two sets of find-
ings have been put forward that appear to strongly favor the enumera-
tion of specific experiences view, at least relative to pure abstraction
models. It is important, therefore, to see how well our distributed
model can do in accounting for these effects.

The first set of findings comes from a set of studies by Whittlesea
(1983). In a large number of studies, Whittlesea demonstrated a role
for specific exemplars in guiding performance on a perceptual identifi-
cation task. We wanted to see whether our model would demonstrate a
similar sensitivity to specific exemplars. We also wanted to see whether
our model would account for the conditions under which such effects
are not oblained.

Whittlesea used letter strings as stimuli. The leaming experiences
subjects received involved simply looking at the stimuli one at a time
on a visual display and writing down the sequence of letters presented.
Subjects were subsequently tested for the effect of this training on their
ability to identify letter strings bearing various relationships to the train-
ing stimuli and to the prototypes from which the training stimuli were
derived, The test was a perceptual identification task; the subject was
simply required to try to identify the letters from a briel flash.

The stimuli Whittlesea used were all distortions of one of two proto-
type letter strings. Table 4 illustrates the essential properties of the sets
of training and test stimuli he used. The stimuli in Set Ia were each
one step away from the prototype. The Ib items were also one step
from the prototype and one step from one of the la distortions. The
Set Ila stimuli were each two steps from the prototype and one step
from a particular Ia distortion. The Set [Ib items were also two steps
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TABLE 4

SCHEMATIC DESCRIPTION OF STIMULUS SETS
USED IN SIMULATIONS OF WHITTLESEA'S EXPERIMENTS

Prototype Ia L] Iia I Tie m v

FPFFF APPPP BFFFFP ABPFP ACPPP APCPP ABCPP QooCC
PAPPP PBPEP PFABPP PACFP PAPCF PABCP CBCBC
PPAFF PPEFP PPABP PPACP PPAPC PPABC BCACE
FPPAP PPPRP FPPAR PPRAC CPPAP CPPAE ABCEA
FPFPA FPPPPR BFFPA CPPPA PCPPA BCPPA CACAC

Mote: The actual stimuli used can be filled in by replacing P with +——: A with ++——:
B with +=—=+; and C with ++++_ The model is not sensitive to the fact the same
subpatiern was used in cach of the 5 shs.

from the prototype, and each was one step from one of the Ila distor-
tions. The Set llc distortions were two steps from the prototype also,
and each was two steps from the closest I1a distortion. Owver the set of
five Ilc distortions, the A and B subpatterns each occurred once in each
position, as they did in the case of the lla distortions. The distortions
in Set Il were three steps from the prototype and one step from the
closest member of Set lla. The distortions in Set V were each five
steps from the prototype.

Whittlesea ran seven experiments using different combinations of
traming and test stimuli. We carried out simulation analogs of all of
these experiments plus one additional experiment thar Whittlesea did
not run. The main difference between the simulation experiments and
Whittlesea’s actual experiments was that he used two different proto-
types in each experiment, while we only used one,

The simulation employed a simple 20-unit module. The set of 20
units was divided into five submodules, one for each letter in
Whittlesea's letter strings. The prototype pattern and the different dis-
tortions used can be derived from the information provided in Table 4.

Each simulation experiment began with null connections between the
units. The training phase involved presenting the st or sets of training
stimuli analogous to those Whittlesea used, for the same number of
presentations. To avoid idiosyncratic effects of particular orders of
training stimuli, each experiment was run six times, each with a dif-
ferent random order of training stimuli. On each trial, activations were
allowed to settle down through 50 processing cycles, and then connec-
tion strengths were adjusted. There was no decay of the increments to
the weights over the course of an experiment.

‘In the test phase, the model was tested with the sets of test items
analogous Lo the sets Whiltlesea used. As a precaution against effects



202 PSYCHOLOGICAL PROCESSES

of prior test items on performance, we simply turned off the adjust-
ment of weights during the test phase,

A summary of the training and test stimuli used in each of the
experiments, of Whittlesea’s findings, and of the simulation results are
shown in Table 5. The numbers represent relative amounts of
enhancement in performance as a resull of the training experience,

TABLE 3

SUMMARY OF PERCEFTUAL IDENTIFICATION EXPERIMENTS
WITH EXPERIMENTAL AND SIMULATION RESULTS

Whiltlesea's  Training Test Expenimental Simulaton

Experiment Stimulus  Sumulus Results Resulis
MNurmber Setish Sets

1 Ia Ia 2 M

Ib A6 A5

¥ 03 -05

2 lla 1l 30 s

Tic A5 A2

¥ 03 -8

3 i FY 1la fr] | M

{11, A& A4

llc i A2

4 lla P & |

la A9 21

Tla Bk By

I A3 13

4 la P - .28

la - 24

Ila - 12

5 Ilab.c P - 25

la A6 21

Tia 16 18

1 i i)

3 1L la .1a 14

lla A6 A%

i A9 .30

7 Ila Ila M 2

Il 13 i

11 A7 A3
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relative to a pretest baseline. For Whittlesea’s data, this is the per-
letter increase in letter identification probability between a pre- and
posttest, For the simulation, it is the increase in the size of the dot
product for a pretest with null weights and a posttest after training. For
comparability to the data, the dot-product difference scores have been
doubled. This is simply a scaling operation to facilitate qualitative com-
parison of experimental and simulation results.

A comparison of the experimental and simulation results shows that
wherever there is a within-experiment difference in Whittlesea's data,
the simulation produced a difference in the same direction. (Between-
experiment comparisons are not considered because of subject and
material differences which render such differences unreliable). The
next several paragraphs review some of the major findings in detail.

Some of the comparisons bring out the importance of congruity
between particular test and training experiences, Experiments 1, 2, and
3 show that when distance of test stimuli from the prototype is con-
trolled, similarity to particular training exemplars makes a difference
both for the human subject and in the model. In Experiment 1, the
relevant contrast was between [a and Ib items. In Experiment 2, il was
between [la and Ilc items. Experiment 3 shows that the subjects and
the model both show a gradient in performance with increasing distance
of the test items from the nearesi old exemplar,

Experiments 4, 4, and 5 explore the status of the prototype and
other test stimuli closer to the prototype than any stimuli actually
shown during training. In Experiment 4, the training stimuli were
fairly far away from the prototype, and there were only five different
training slimuli (the members of the Ila set). In this case. controlling
for distance from the nearesl training stimuli, test stimuli closer to the
prototype showed more enhancement than those farther away. (la vs.
Il comparison). Howewver, the actual training stimuli nevertheless had
an advantage over bolth other sets of test stimuli, including those that
were closer to the prototype than the training stimuli themselves (Ila
vs. la comparison).

In experiment 4' {not run by Whittlesea), the same number of train-
ing stimuli were used as in Experiment 4, but these were closer to the
prototype. The result is that the simulation shows an advantage for the
prototype over the old exemplars. The specific training stimuli used,
even in this experiment, do influence performance, however, as
Whittlesea's first experiment (which used the same training set) shows
(Ia-Ib contrast). This effect holds both for the subjects and for the
simulation. The pattern of results is similar to the findings of Posner
and Keele (1968), in the condition where subjects learned six exem-
plars which were rather close to the prototype. In this condition, their
subjects’ categorization performance was most accurate for the
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prototype, but more accurate for old than for new distortions, just as in
this simulation experiment,

In Experiment 5, Whittlesea demonstrated that a slight advantage for
stimuli closer to the prototype than the training stimuli would emerge,
even with high-level distortions, when a large number of different dis-
tortions were used once each in training, instead of a smaller number
of distortions presented three times each. The effect was rather small
in Whittlesea’s case (falling in the third decimal place in the per-letter
enhancement effect measure) but other experiments have produced
similar results, and so does the simulation. In fact, since the prototype
was tested in the simulation, we were able to demonstrate a mono-
tonic drop in performance with distance from the prototype in this
expenment.

Experiments 6 and 7, which used small numbers of training exem-
plars rather far from the prototype, both explore in different ways the
relative influence of similarity to the prototype and similarity to the set
of training exemplars. Both in the data and in the model, similarity to
particular training stimuli is more important than similarity to the pro-
totype, given the sets of training stimuli used in these experiments.

Taken together with other findings, Whittlesea's results show clearly
that similarity of test items to particular stored exemplars is of
paramount importance in predicting perceptual performance. Other
experiments show the relevance of these same factors in other tasks,
such as recognition memory, classification learning, etc. It is interesting
1o note, though, that performance does not honor the specific exem-
plars so strongly when the training items are closer to the prototype.
Under such conditions, performance is superior on the protolype or
stimuli closer to the prototype than the training stimuli. Even when
the training stimuli are rather distant from the prototype, they produce
a benefit for stimuli closer 1o the prototype if there are a large number
of distinct training stimuli each shown only once. Thus, the dominance
of specific training experiences is honored only when the training
experiences are few and far between. Otherwise, an apparent advantage
for the prototype, though with some residual benefit for particular
training stimuli, is the result.

The congruity of the results of these simulations with experimental
findings underscores the applicability of distributed models to the ques-
tion of the nature of the representation of general and specific informa-
tion. In fact, we were somewhat surprised by the ability of the model
1o account for Whittlesea's results, given the fact that we did not rely
on coniext-sensitive encoding of the letter-string stimuli. That is, the
distributed representation we assigned to each letter was independent of
the other letters in the string. A contexi-sensitive encoding would,
however, prove necessary to capture a larger ensemble of stimuli.
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Whether a context-sensitive encoding would produce the same or
slightly different results depends on the exact encoding. The exact
degree of overlap of the patterns of activation produced by different
distortions of the same protolype delermines the extent to which the
model will tend to favor the prototype relative to particular old exem-
plars. The degree of overlap, in turn, depends upon the specific
assumptions made aboul the encoding of the stimuli. However, the
general form of the results of the simulation would be unchanged:
When all the distortions are close to the prototype, or when there is a
very large number of different distortions, the central tendency will
produce the strongest response; but when the distortions are fewer and
farther from the prototype, the training exemplars themselves will pro-
duce the strongest activations. What the encoding would effect is the
similarity metric.

In this regard, it is worth mentioning another finding that may appear
to challenge our distributed account of what is learned through repeated
experiences with exemplars. This is the finding of Medin and
Schwanenflugel (1981). Their experiment compared leaming of two
different sets of stimuli in a categorization task. One set of stimuli
could be categorized by a linear combination of weights assigned to par-
ticular values on each of four dimensions considered independently.
The other set of stimuli could not be categorized in this way. The
experiment demonstrated clearly that linear separability was not neces-
sary for categorization leaming. Linearly separable stimuli were less
easily leamed than a set of stimuli that were not linearly separable
but had a higher degree of similarity between exemplars within
categories.

At first glance, it may seem that Medin and Schwanenflugel’s experi-
ment is devastating to our distributed approach since our distributed
model can only leam linear combinations of weights. However,
whether a linear combination of weights can suffice in the Medin and
Schwanenflugel experiments depends on how patterns of aclivation are
assigned to stimuli. If each stimulus dimension is encoded separately in
the representation of the stimulus, then the Medin and Schwanenflugel
stimuli cannot be learned by our model. But if each stimulus dimen-
sion is encoded in a context sensitive way, then the pattemns of activa-
tion associated with the different stimuli become linearly separable
again.

One way of achieving context sensitivily is via separale enumeration
of traces. But it is well known that there are other ways as well,
Several different kinds of context-sensitive encodings which do not
require separate enumeration of traces or the allocation of separate
units to individual experiences are considered in Chapter 3 and in
Chapters 18 and 19.



206  PSYCHOLOGICAL PROCESSES

It should be noted that the motivation for context-sensitive encoding
in the use of distributed representations is captured by, but by no
means limited to, the kinds of observations reported in the experiment
by Medin and Schwanenflugel. Conlext-sensitive encoding is required if
distributed models are to be able to overcome the linear predictability
constraint, and this constraint pervades both computational and psycho-
logical applications of the idea of distributed representations.

EXTENSIONS OF THE MODEL

There are a number of phenomena in the learning and memory
literature that lend themselves to accounts in terms of distributed
models of memory. Here we will give a brief list. In some cases, the
phenomena are addressed in other chapters, and we merely give
pointers. In other cases, we have not yet had an opportunity to carry
out detailed simulations; in these cases we describe briefly how we
might envision encompassing the phenomena in terms of distributed
madels.

The Emergence of Semantic Memory From Episodic Traces

A distributed model leads naturally to the suggestion that semantic
memory may be just the residue of the superposition of episodic traces.
Consider, for example, representation of a proposition encountered in
several different contexts, and assume for the moment that the context
and content are represented in separale parts of the same module.
Over repeated experience with the same proposition in different con-
texts, the proposition will remain in the interconnections of the units in
the proposition submodule, but the particular associations to particular
contexts will wash out. However, material that is only encountered in
one particular context will tend to be somewhat contextually bound. So
we may notl be able to retrieve what we learn in one context when we
need it in other situations. Other authors (e.g.. J. B. Anderson &
Ross, 1980) have recently argued against a separation between episodic
and semantic memory, pointing out interactions between traditionally
episodic and semantic memory tasks. Such findings are generally con-
sistent with the view we have taken here.

17. A DISTRIBUTED MODEL OF MEMORY 207

Emergence of Regularities in Behavior and Their Coexistence
With Exceptions

Distributed models alse influence our thinking about how human
behavior might come o exhibit the kind of regularity that often leads
linguists to postulate systems of rules. In Chapter 18 we describe a dis-
tributed model of a system that can learn the past-tense system of
English, given as inputs pairs of patterns corresponding to the phono-
logical structure of the present and past tense forms of actual English
verbs. The model accounts for several interesting phenomena which
have been taken as evidence for the acquisition of "linguistic rules’
such the fact that children at a certain stage overregularize the
pronunciation of irregular forms. It also accounts for the coexistence of
irregular pronunciations with productive use of the regular past tense in
the mature language user,

In general, then, distributed models appear to provide alternatives to
a variety of models that postulate abstract, summary representations
such as protolypes, logogens, semantic memory representations, or
even linguistic rules.

Spared Learning in Amnesia

Distributed models also provide a natural way of accounting for
spared learning by amnesics—persons who have diminished ability to
learn new information after some traumatic event. There are generally
two types of spared learning effects observed. First, in domains where
amnesics show deficits, they nevertheless show a residual ability to
learn gradually from repeated experiences. Indeed, they generally
appear to be relatively more spared in their ability to extract what is
common aboutl an ensemble of experiences than in their ability to
remember the details of individual events. Second, there are some
domains in which most amnesics show no deficits at all. These
phenomena are taken up from the point of view of a distributed model
of learning and memeory in Chapter 25. Here, we briefly consider the
main points of the arguments made in that chapter.

First, distributed models provide a natural way of explaining why
there should be residual ability to learn gradually from repeated experi-
ence even within those domains where amnesics are grossly deficient in
their memory for specific episodic experiences. For if we simply imag-
ine that the effective size of the increments to the connections is
reduced in amnesia, then the general properties of distrbuted
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models—the fact that they extract the central tendency from a set of
similar experiences and build up a trace of the prototype from a senes
of repeated exemplars—automatically provide an account of the gradual
accumulation of repeated information in the face of a profound deficit
in remembering any specific episode in which the information was
presented. Indeed, in some cases reduced increments in the sizes of
connections can aclually be an advantage for pulling out the central ten-
dency of a set of experiences since reduction in the size of the incre-
ments means that the idiosyncratic properties of recent experiences will
not unduly dominate the composite memory Lrace,

The fact that large changes in connection strengths are not univer-
sally beneficial in distributed models may also provide a basis for
explaining why certain aspects of learning and memory are completely
unaffected in amnesia. The domains in which learning is almost com-
pletely spared are just the ones in which learning is very gradual in nor-
mals and is independent of awareness of having learmned. These kinds
of learning, we suggest, are acquired gradually by normals because large
changes in the strengths of conmnections do not facilitate leaming in
such cases.

Memory Blends

Loftus (1977) has observed that subjects often combine information
from two episodes when they altempt to descnbe some aspect of just
one of these events. Many observations of this kind of effect have
bezn observed in the context of legal testimony, but Loftus has now
begun to explore the same effecis in more basic experimental para-
digms. The general result is that subjects do not simply report the
correct property from one or the other memory trace; rather, they
report a property that results from averaging or blending the properties
of the individual traces. In one study, for example, many subjects
reported that the color of a vehicle was green. However, no subject
had actually seen a green truck; instead, they had seen a yellow truck in
the original scene and a blue one in a distorted wersion of it. Such
blend errors, obviously, are the beginnings of the formation of a sum-
mary representation and fall naturally out of distributed models.

Interference and Fan Effects

One of the oldest phenomena in the memory literature 18 interfer-
ence. That similar memories or memories acquired in similar contexts
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interfere with each other was a central topic in memory research for
years (see Crowder, 1976, for a review). Recently, this sort of interfer-
ence effect has been explored by John Anderson, under the name of
the fan effect (see J. B. Anderson, 1983, for a review). The fan effect
refers to the fact that reaction times to indicate recognition of proposi-
tions goes up with the number of propositions studied that share argu-
ments with the proposition under test. For example, The boy kissed the
girl is harder to recognize if the subject has studied other sentences
involving rhe boy or the girl than if he has not.

Distributed models like the one we have described here exhibit
interference of just this kind. Singley (personal commuiication, 1985)
has in fact simulated a simple fan-effect experiment. He trained a
module of 48 units on "propositions” consisting of four parts. The
parts correspond to a subject, a verb, an object, and a fourth part thar
served as a conjunctive representation of the three other constituents
{following Hinton, 1981a). Some of the propositions shared arguments
{subpatterns) with others. After several exposures 1o the set of pat-
terns, Singley tested the module’s response to each of the leamed pat-
terns and found that the response was generally weaker and took longer
to reach a strength criterion for those patterns which shared arguments
with other patterns. Obwviously there is a lot more 1o fan effects than
this; how well distributed models will be able to do in accounting for
the details of the fan effect literature and other aspects of interference
is a matter for further research.

AUGMENTING THE MODEL WITH HIDDEN UNITS

For all its successes, it must be said that our model does suffer from
the fact that it can only learn to respond appropriately to sets of pat-
terns that obey the linear predictability constraint, While this constraint
can be overcome in specific cases by providing a conjunctive coding
capable of serving as a basis for learning any prespecified set of pat-
terns, it cannot be overcome. in general, without great cost in terms of
units to cover the space of possibly necessary conjunctive representa-
tions. To overcome this limitation, il is necessary to have a model that
can create the right conjunctive representation to solve the problems it
faces in a way that is efficient in terms of units and connections,

Both the Boltzmann learming rule (Chapter T7) and the generalized
delta rule (Chapter 8) provide ways of constructing just the required set
of representations. Here we briefly sketch the application of the gen-
eralized delia rule to the case of an auto-associalor with hidden units.

The basic idea is simple. A module consists of a large network of
units. Some units are designated as input/outpur or simply fmput unils
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and the remaining are designated as hidden unils. As in the case
without hidden units, the goal of the system is to have the net input
from internal sources impinging on a particular input/output unit equal
the external input to that unit, In this case, however, input from the
hidden units is added as part of the total input from mternal sources.
The basic difference between a hidden unit and an input/output unit is
that hidden units receive no inputs from outside the module, nor do
they send outputs outside of the module. Rather, they receive inputs
from other hidden units or from the input/output units, The general-
ized delta rule allows the system to develop a set of connections 1o and
among the hidden units which, in principle, allows the system to
retrieve the correct input pattern from any unigue subportion of the
input pattern—provided there are enough hidden units.

The "classical® example of a set of vectors for which hidden units are
required is due to Hinton (1981a). This is the one-same—one problem.
Suppose that the input vectors are divided into three portions. The
first portion represents a number (either one or zero); the second por-
tion represents a relation (either same or different); and the final por-
tion represents a number (again either one or zero). Further, suppose
that we want to store four vectors in the system representing the four
propositions, one-same-one, one-differeni-zero, zero—same-zero, and
zero—different—one. Now, we probe the system with two of the three
sections of a stored input vector and hope that the memory system
reconstructs the missing portion. For example, we present the system
with one-same=" or zero-?—-one and see what values get filled in for the
unspecified portion of the vector.

For this example, leamning done with the standard delta rule will not
succeed. These vectors violate the linear predictability constraint. For
example, suppose we present the system with one-same-?. In this
case, the pattern associated with ome in the first position are as often
associated with zero in the third position as they are with one in that
position. Thus, this pattern will try to establish a blend of zerp and ome
in the unspecified portion of the input vector. Similarly, the patiern
representing same in the middle portion are as often associated with the
zero as with one in both other slots. Each portion will singly try to pro-
duce a blend of the two possibilities in the missing portion and both
together will simply produce the same blend. The same argument can
be made for each slot. However, with hidden units, the problem can
be solved. A given hidden unit can relate bits from two or more slots
together, and in that way it can fill in the appropriate pattern when it is
missing from the inpul.

We have tested a network on a very simple version of this problem,
using the generalized delta rule (Chapter 8) to learn the appropriate
weights to and from the hidden units. In this case there were only
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three input/output units, one for each of the three components of the
one-same—-one propositions. The number one and the predicate seme
were represented by 15 in the appropriale positions, and the number
zero and the predicate different were represented by 0s in the appropri-
ate positions. Thus, the proposition ere—same-one was represented by
the input pattern 111 and the proposition zero—differeni—one was
represented by patterns 001. The other two propositions were analo-
gously represented as 010 and 100.

The basic auto-associalive memory paradigm was modified slightly
from the ones presented earlier in this chapter to accommodate the
requirements of hidden units. Most of the modifications are not sub-
stantive, but were made to accommodate the technical requirements of
the generalized delta rule. In particular, a logistic sigmoid "squashing™
function was substituted for the one described in Equations 1 and 2.
This was done because our original squashing function was not dif-
ferentiable as required by the generalized delta rule (see Chapter 8 for
details). This is 2 minor difference and has little effect on the perfor-
mance of the system. Similarly, output values of units were allowed to
range between [0,1] rather than [-1,1]. This change again is minor. It
essentially involves a scale change and the addition of a Mas or thresh-
old term ({again, see Chapter 8 for details). In this case 0.5 is the rest-
ing level rather than 0.0. One other somewhat more significant change
of paradigm was also required. In the standard aulo-associator we did
not allow units to connect 1o themselves. The technical reason for this
is that they can "learn” the input (i.e.. they can make the internal input
equal to the external input) simply by learning to "predict” themselves.
However, this does not facilitate reconstruction of the whole pattem
from a part. If the stronges! connections are from a unit to itself, when
that unit is not present in the probe pattern, the missing element will
not be well predicted. We wished to impose the same restriction to the
model with hidden units, but in this case the restriction becomes harder
to enforce. That is, the system can learn to gel around a constraint on
direct connections by using hidden uniis to "shadow" each of the input
units. When a particular input unit i$ tumed on, it turns on its "sha-
dow" hidden unit which in turn feeds activation back to the input unit.
Thus we again have a unit predicting itself, Since we are most
interested in the case of pattern completion, we want to avoid this
situation. One way to avoid this is 10 reguire that the input from all
units excepr the unit in question match the external input. To accom-
plish this, we used the following procedure: For each patlern lo be
learned, for example, 111, we actually trained the module to associate
all of the patterns 117, 171 and ?11 with the whole 111 pattern.

There were three input units and three hidden units. A network was
sel up which allowed any input unit to connect to any other input umi
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or to any hidden unit. Hidden units were allowed 1o connect lo any
input unit and any hidden unit—including themselves. The model was
repeatedly presented with each of the three training inputs of each of
the four patterns as indicated above, and the network was allowed to
learn until it became stable and correctly filled in the missing parts of
the patterns. The system was taught to fill in the missing portion of
the pattern in three cycles and then to hold this completed pattern.
Table 6 shows the state achieved by the three hidden units for each of
the four input patterns. We see a distributed pattern over the hidden
units in which the first unit signals that the predicate was either dif-
ferent or the proposilion was one-same—one. The second hidden unit
indicates that the predicate was either same or the proposilion was one-
different-zero, and the final hidden unit indicates that the predicale was
either different or the proposition was one-same-one. This provides a
unique, linearly independent basis from which to reconsiruct the
required input patterns.

The final network is shown in Figure 10 and the weight matrix is
shown in Table 7. A number of interesting features of the network
should be observed. First, since none of the input units can predict any
other of the input units, the potential connections among input units
have all gone to zero. Second, the hidden units all connect positively
to themselves and negatively to each other. This allows a unit once
turned on 1o stay on and shut down any noise feeding into those units
that were not turned on. Finally, the connections between the input
units and the hidden units are roughly symmetric. That is, whenever a
particular hidden unit is turned on by a given inpul unit, that hidden
unit tries, in turn, to turn on that input unit, It is interesting that this
general kind of architecture in which units are connected roughly sym-
metrically and in which there are pools of mutually inhibitory units
which evolved following the presentation of these very difficult patterns
is very much like the architecture we have assumed in a number of our

TABLE &

HIDDEN UNIT REPRESENTATIONS FOR
THE ONE-SAME-ONE PROBLEM

Propositions input Hudden Unit

Patierns Patterns
P =33 —0ng 111 = 1
one-differant =zere 100 — ml
TErO=same—Ter o = 110
zero=different—one 1] — 101
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INPUT

FIGURE 10. The network used in selving the ore-same—one problem.  Sce text for
explanation.

models, including the interactive activation model of word perception
and the models described in Chapters 15 and 16,

.F‘maﬂy, before leaving this section, it should be noted that the
hidden-units version of an auto-associator will behave very much like
the system we have described throughout this chapter if the situation
does not require hidden units. In this case, the connections among the

TABLE 7

WEIGHTS ACQUIRED IN LEARNING THE ONE-SAME-ONE PROBLEM

FROM
Lnpur Units Hedden Units
0 0 0 6 4 "
Input 0 ] 1] 4 4 ] |
Units 0 0 0 4 - 4 |
TO
; -5 & 6 £ 3 .3
Hidden 6 6 .5 -3 [ -3
Uinits ] -5 [ -3 =3 ]
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input units can capture the structure of the problem, and the connec-
tions to and from the hidden units will tend not to play an important
role. This is because direct connections are leamed more quickly than
those which propagate information through hidden units. These will lag
behind, and if they are not required, their strength will stay relatively
small.

It should also be emphasized that the use of hidden units overcomes
a problem that our present model shares with enumeration models: the
problem of having a fixed set of representational primitives. Hidden
units really are new representational primitives that grow and develop
to meet the representational needs of the particular set of patterns that
have been encountered. They allow the model to change its representa-
tion and thereby to change the pattern of similarity among the input
patterns. We have only begun our éxploration of the generalized delta
rule and its application to the case of the auto-associator. We are very
oplimistic that it can serve as a mechanism for building the kinds of
internal representations required by allowing distributed memories the
flexibility of adapting to arbitrary sets of stimulus patterns.

CONCLUSION

It this chapter, we have argued that a distributed model of memory
provides a natural way of accounting for the fact that memory appears
to extract the central tendencies of a set of experiences and for the fact
that memory is sensitive 10 the details of specific events and experi-
ences. We have seen how a simple distributed model, using the delta
rule, provides a fairly direct and homogeneous account for a large body
of evidence relevant Lo the representation of general and specific infor-
mation. The delta rule—and now the generalized delta rule—provide
very simple mechanisms for extracting regularities from an ensemble of
inputs without the aid of sophisticated generalization or rule-
formulating mechanisms that oversee the performance of the process-
ing system. These leaming rules are completely local, in the sense tha
they change the connection between one unit and another on the basis
of information that is locally available to the connection rather than on
the basis of global information about overall performance. The model
thus stands as an alternative to the view that learning in cognitive sys-
tems involves the explicit formulation of rules and abstractions under
the guidance of some explicit overseer. We do not wish to suggest that
explicit rule formation has no place in a cognitive theory of learning
and memory; we only wish to suggest that such mechanisms need not
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be invoked whenever behavior is observed that appears to be describ-
able by some generalization or rule.

We emphasize that the basic properties of distributed models are
h_u'gﬂly independent of specific detailed assumptions about implementa-
tion, such as the dynamic range of the units involved or the exacl form
of the activation update rule. This points are underscored by the
models considered in Chapters 18 and 19, in which some of the same

general properties arise from models making use of somewhat different
detailed assumptions.
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