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Cogpnitive science has a long-standing and important relationship to the
computer. The computer has provided a tool whereby we have been
able to express our theories of mental activity; it has been a valuable
source of metaphors through which we have come to understand and
appreciate how mental activities might arise out of the operations of
simple-component processing elements.

I recall vividly a class 1 taught some fifteen years ago in which 1
outlined the then-current view of the cognitive system. A particularly
skeptical student challenged my account with its reliance on concepts
drawn from computer science and artificial intelligence with the ques-
tion of whether I thought my theories would be different if it had
happened that our computers were parallel instead of serial. My re-
sponse, as | recall, was to concede that our theories might very well be
different, but to argue that that wasn’t a bad thing. I pointed out that
the inspiration for our theories and our understanding of abstract phe-
nomena always is based on our experience with the technology of the
time. | pointed out that Aristotle had a wax tablet theory of memory,
that Leibniz saw the universe as clockworks, that Freud used a hydraulic
model of libido flowing through the system, and that the telephone-
switchboard model of intelligence had played an important role as well.
The theories posited by those of previous generations had, I suggested,
been useful in spite of the fact that they were based on the metaphors
of their time. Therefore, | argued, it was natural that in our generation—
the generation of the serial computer—we should draw our insights
from analogies with the most advanced technological developments of
our time. | don’t now remember whether my response satisfied the
student, but 1 have no doubt that we in cognitive science have gained
much of value through our use of concepts drawn from our experience
with the computer.

In addition to its value as a source of metaphors, the computer differs
from earlier technologies in another remarkable way. The computer can
be made to simulate systems whose operations are very different from
the computers on which these simulations run. In this way we can use
the computer to simulate systems with which we wish to have experi-



ence and thereby provide a source of experience that can be drawn
upon in giving us new metaphors and new insights into how mental
operations might be accomplished. It is this use of the computer that
the connectionists have employed. The architecture that we are explor-
ing is not one based on the von Neumann architecture of our current
generation of computers but rather an architecture based on consider-
ations of how brains themselves might function. Our strategy has thus
become one of offering a general and abstract model of the computa-
tional architecture of brains, to develop algorithms and procedures well
suited to this architecture, to simulate these procedures and architecture
on a computer, and to explore them as hypotheses about the nature of
the human information-processing system. We say that such models
are neurally inspired, and we call computation on such a system brain-
style computation. Our goal in short is to replace the computer metaphor
with the brain metaphor.

4.1 Why Brain-Style Computation?

Why should a brain-style computer be an especially interesting source
of inspiration? Implicit in the adoption of the computer metaphor is an
assumption about the appropriate level of explanation in cognitive sci-
ence. The basic assumption is that we should seek explanation at the
program or functional level rather than the implementational level. It is
thus often pointed out that we can learn very little about what kind of
program a particular computer may be running by looking at the elec-
tronics. In fact we don’t care much about the details of the computer
at all; all we care about is the particular program it is running. If we
know the program, we know how the system will behave in any situ-
ation. It doesn’t matter whether we use vacuum tubes or transistors,
whether we use an IBM or an Apple, the essential characteristics are
the same. This is a very misleading analogy. It is true for computers
because they are all essentially the same. Whether we make them out
of vacuum tubes or transistors, and whether we use an IBM or an Apple
computer, we are using computers of the same general design. When
we look at essentially different architecture, we see that the architecture
makes a good deal of difference. It is the architecture that determines
which kinds of algorithms are most easily carried out on the machine
in question. It is the architecture of the machine that determines the
essential nature of the program itself. It is thus reasonable that we
should begin by asking what we know about the architecture of the
brain and how it might shape the algorithms underlying biological
intelligence and human mental life.

The basic strategy of the connectionist approach is to take as its
fundamental processing unit something close to an abstract neuron. We
imagine that computation is carried out through simple interactions
among such processing units. Essentially the idea is that these process-

ing elements communicate by sending numbers along the lines that
connect the processing elements. This identification already provides
some interesting constraints on the kinds of algorithms that might
underlie human intelligence.

The operations in our models then can best be characterized as “neur-
ally inspired.” How does the replacement of the computer metaphor
with the brain metaphor as model of mind affect our thinking? This
change in orientation leads us to a number of considerations that further
inform and constrain our model-building efforts. Perhaps the most
crucial of these is time. Neurons are remarkably slow relative to com-
ponents in modern computers. Neurons operate in the time scale of
milliseconds, whereas computer components operate in the time scale
of nanoseconds—a factor of 10° faster. This means that human processes
that take on the order of a second or less can involve only a hundred
or so time steps. Because most of the processes we have studied—
perception, memory retrieval, speech processing, sentence comprehen-
sion, and the like—take about a second or so, it makes sense to impose
what Feldman (1985) calls the “100-step program” constraint. That is,
we seek explanations for these mental phenomena that do not require
more than about a hundred elementary sequential operations. Given
that the processes we seek to characterize are often quite complex and
may involve consideration of large numbers of simultaneous con-
straints, our algorithms must involve considerable parallelism. Thus
although a serial computer could be created out of the kinds of com-
ponents represented by our units, such an implementation would surely
violate the 100-step program constraint for any but the simplest pro-
cesses. Some might argue that although parallelism is obviously present
in much of human information processing, this fact alone need not
greatly modify our world view. This is unlikely. The speed of compo-
nents is a critical design constraint. Although the brain has slow com-
ponents, it has very many of them. The human brain contains billions
of such processing elements. Rather than organize computation with
many, many serial steps, as we do with systems whose steps are very
fast, the brain must deploy many, many processing elements coopera-
tively and in parallel to carry out its activities. These design character-
istics, among others, lead, | believe, to a general organization of
computing that is fundamentally different from what we are used to.

A further consideration differentiates our models from those inspired
by the computer metaphor—that is, the constraint that all the knowl-
edge is in the connections. From conventional programmable computers
we are used to thinking of knowledge as being stored in the state of
certain units in the system. In our systems we assume that only very
short-term storage can occur in the states of units; jong-term storage
takes place in the connections among units. Indeed it is the connec-
tions—or perhaps the rules for forming them through experience—that
primarily differentiate one model from another. This is a profound



difference between our approach and other more conventional ap-
proaches, for it means that almost all knowledge is implicit in the struc-
ture of the device that carries out the task rather than explicit in the
states of units themselves. Knowledge is not directly accessible to in-
terpretation by some separate processor, but it is built into the processor
itself and directly determines the course of processing. It is acquired
through tuning of connections as these are used in processing, rather
than formulated and stored as declarative facts.

These and other neurally inspired classes of working assumptions
have been one important source of assumptions underlying the con-
nectionist program of research. These have not been the only consid-
erations. A second class of constraints arises from our beliefs about the
nature of human information processing considered at a more abstract,
computational level of analysis. We see the kinds of phenomena we
have been studying as products of a kind of constraint-satisfaction
procedure in which a very large number of constraints act simulta-
neously to produce the behavior. Thus we see most behavior not as the
product of a single, separate component of the cognitive system but as
the product of large set of interacting components, each mutually con-
straining the others and contributing in its own way to the globally
observable behavior of the system. It is very difficult to use serial
algorithms to implement such a conception but very natural to use
highly parallel ones. These problems can often be characterized as bes!-
maich or optimization problems. As Minsky and Papert (1969) have
pointed out, it is very difficult to solve best-match problems serially.
This is precisely the kind of problem, however, that is readily imple-
mented using highly parallel algorithms of the kind we have been
studying.

The use of brain-style computational systems, then, offers not only a
hope that we can characterize how brains actually carry out certain
information-processing tasks but also solutions to computational prob-
lems that seem difficult to solve in more traditional computational
frameworks. It is here where the ultimate value of connectionist systems
must be evaluated.

In this chapter I begin with a somewhat more formal sketch of the
computational framework of connectionist models. 1 then follow with
a general discussion of the kinds of computational problems that con-
nectionist models seem best suited for. Finally, I will briefly review the
state of the art in connectionist modeling.

The Connectionist Framework
There are seven major components of any connectionist system:

- a set of processing units;

* a state of activation defined over the processing units;

- an output function for each unit that maps its state of activation into an
output;

+ a pattern of connectivity among units;

- an activation rule for combining the inputs impinging on a unit with
its current state to produce a new level of activation for the unit;

- a learning rule whereby patterns of connectivity are modified by
experience;

- an environment within which the system must operate.

Figure 4.1 illustrates the basic aspects of these systems. There is a set
of processing units, generally indicated by circles in my diagrams; at
each point in time each unit u, has an activation value, denoted in the
diagram as a, (1); this activation value is passed through a function fito
produce an output value o(t). This output value can be seen as passing
through a set of unidirectional connections (indicated by lines or arrows
in the diagrams) to other units in the system. There is associated with
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Figure 4.1 The basic components of a parallel distributed processing system



each connection a real number, usually called the weight or strength of
the connection, designated w,, which determines the affect that the first
unit has on the second. All of the inputs must then be combined, and
the combined inputs to a unit (usually designated the net input to the
unit) along with its current activation value determine its new activation
value via a function F. These systems are viewed as being plastic in the
sense that the pattern of interconnections is not fixed for all time; rather
the weights can undergo modification as a function of experience. In
this way the system can evolve. What a unit represents can change
with expernience, and the system can come to perform in substantially
different ways.

A Set of Processing Units Any connectionist system begins with a set
of processing units. Specifying the set of processing units and what
they represent is typically the first stage of specifying a connectionist
model. In some systems these units may represent particular conceptual
objects such as features, letters, words, or concepts; in others they are
simply abstract elements over which meaningful patterns can be de-
fined. When we speak of a distributed representation, we mean one in
which the units represent small, featurelike entities we call microfeatures.
In this case it is the pattern as a whole that is the meaningful level of
analysis. This should be contrasted to a one-unit—one-concept or localist
representational system in which single units represent entire concepts
or other large meaningful entities.

All of the processing of a connectionist system is carried out by these
units. There is no executive or other overseer. There are only relatively
simple units, each doing its own relatively simple job. A unit’s job is
simply to receive input from its neighbors and, as a function of the
inputs it receives, to compute an output value, which it sends to its
neighbors. The system is inherently parallel in that many units can
carry out their computations as the same time.

Within any system we are modeling, it is useful to characterize three
types of units: input, output, and hidden units. Input units receive inputs
from sources external to the system under study. These inputs may be
either sensory inputs or inputs from other parts of the processing sys-
tem in which the model is embedded. The output units send signals
out of the system. They may either directly affect motoric systems or
simply influence other systems external to the ones we are modeling.
The hidden units are those whose only inputs and outputs are within
the system we are modeling. They are not “visible” to outside systems.

The State of Activation In addition to the set of units we need a
representation of the state of the system at time t. This is primarily
specified by a vector a(t), representing the pattern of activation over the
set of processing units. Each element of the vector stands for the acti-
vation of one of the units. It is the pattern of activation over the set of

units that captures what the system is representing at any time. It is
useful to see processing in the system as the evolution, through time,
of a pattern of activity over the set of units.

Different models make different assumptions about the activation
values a unit is allowed to take on. Activation values may be continuous
or discrete. If they are continuous, they may be unbounded or bounded.
If they are discrete, they may take binary values or any of a small set
of values. Thus in some models units are continuous and may take on
any real number as an activation value. In other cases they may take
on any real value between some minimum and maximum such as, for
example, the interval [0,1]. When activation values are restricted to
discrete values, they most often are binary. Sometimes they are re-
stricted to the values 0 and 1, where 1 is usually taken to mean that
the unit is active and 0 is taken to mean that it is inactive.

Output of the Units Units interact by transmitting signals to their
neighbors. The strength of their signals and therefore the degree to
which they affect their neighbors are determined by their degree of
activation. Associated with each unit u; is an output function f(a.(t)),
which maps the current state of activation to an output signal o(t). In
some of our models the output level is exactly equal to the activation
level of the unit. In this case f is the identity function f (x) = x. Some-
times f is some sort of threshold function so that a unit has no affect
on another unit unless its activation exceeds a certain value. Sometimes
the function f is assumed to be a stochastic function in which the output
of the unit depends probabilistically on its activation values.

The Pattern of Connectivity Units are connected to one another. It is
this pattern of connectivity that constitutes what the system knows and
determines how it will respond to any arbitrary input. Specifying the
processing system and the knowledge encoded therein is, in a connec-
tionist model, a matter of specifying this pattern of connectivity among
the processing units.

In many cases we assume that each unit provides an additive contri-
bution to the input of the units to which it is connected. In such cases
the total input to the unit is simply the weighted sum of the separate
inputs from each of the individual units. That is, the inputs from all of
the incoming units are simply multiplied by a weight and summed to
get the overall input to that unit. In this case the total pattern of
connectivity can be represented by merely specifying the weights for
each of the connections in the system. A positive weight represents an
excitatory input, and a negative weight represents an inhibitory input.
It is often convenient to represent such a pattern of connectivity by a
weight matrix W in which the entry w, represents the strength and
sensg of the connection from unit 4, to unit u,. The weight w, is a
positive number if unit 4, excites unit u;; it is a negative number if unit



u, inhibits unit u,; and it is 0 if unit u, has no direct connection to unit
u,. The absolute value of w, specifies the strength of the connection.

The pattern of connectivity is very important. It is this pattern that
determines what each unit represents. One important issue that may
determine both how much information can be stored and how much
serial processing the network must perform is the fan-in and fan-out of
a unit. The fan-in is the number of elements that either excite or inhibit
a given unit. The fan-out of a unit is the number of units affected
directly by a unit. It is useful to note that in brains these numbers are
relatively large. Fan-in and fan-out range as high as 100,000 in some
parts of the brain. It seems likely that this large fan-in and fan-out
allows for a kind of operation that is less like a fixed circuit and more
statistical in character.

Activation Rule We also need a rule whereby the inputs impinging
on a particular unit are combined with one another and with the current
state of the unit to produce a new state of activation. We need function
F, which takes a(t) and the net inputs, net, = X, w,0,t), and produces
a new state of activation. In the simplest cases, when F is the identity
function, we can write a(t + 1) = Wo(t) = net (). Sometimes F is a
threshold function so that the net input must exceed some value before
contributing to the new state of activation. Often the new state of
activation depends on the old one as well as the current input. The
function F itself is what we call the activation rule. Usually the function
is assumed to be deterministic. Thus, for example, if a threshold is
involved it may be that a,(f) = 1 if the total input exceeds some threshold
value and equals 0 otherwise. Other times it is assumed that F is
stochastic. Sometimes activations are assumed to decay slowly with
time so that even with no external input the activation of a unit will
simply decay and not go directly to zero. Whenever a/(t) is assumed to
take on continuous values, it is common to assume that F is a kind of
sigmoid function. In this case an individual unit can saturate and reach
a minimum or maximum value of activation.

Modifying Patterns of Connectivity as a Function of Experience
Changing the processing or knowledge structure in a connectionist
system involves modifying the patterns of interconnectivity. In principle
this can involve three kinds of modifications:

1. development of new connections;

2. loss of existing connections;
3. modification of the strengths of connections that already exist.
Very little work has been done on (1) and (2). To a first order of

approximation, however, (1) and (2) can be considered a special case of
(3). Whenever we change the strength of connection away from zero to

some positive or negative value, it has the same effect as growing a
new connection. Whenever we change the strength of a connection to
zero, that has the same effect as losing an existing connection. Thus
we have concentrated on rules whereby strengths of connections are
modified through experience.

Virtually all learning rules for models of this type can be considered
a variant of the Hebbian learning rule suggested by Hebb (1949) in his
classic book Organization of Behavior. Hebb's basic idea is this: If a unit
u, receives a input from another unit u,, then, if both are highly active,
the weight w, from u, to u, should be strengthened. This idea has been
extended and modified so that it can be more generally stated as

dw, = g (@), (o (t),w,),

where 1(t) is a kind of teaching input to u,. Simply stated, this equation
says that the change in the connection from u, to u, is given by the
product of a function g() of the activation of u, and its teaching input ¢,
and another function k() of the output value of 4, and the connection
strength w,. In the simplest versions of Hebbian learning, there is no
teacher and the functions g and h are simply proportional to their first
arguments. Thus we have

bw, = a0,

where € is the constant of proportionality representing the learning
rate. Another common variation is a rule in which h(o,(t),w,) = o{t) and
ga.(1).0(1)) = €(t.(t) — a(t)). This is often called the Widrow-Hoff, because
it was originally formulated by Widrow and Hoff (1960), or the delta
rule, because the amount of learning is proportional to the difference (or
delta) between the actual activation achieved and the target activation
provided by a teacher. In this case we have

Sw, = e(L(t) — a(N)oft).

This is a generalization of the perceptron leaming rule for which the
famous perception convergence theorem has been proved. Still another
variation has

dw, = ea(tloft) — w,).

This is a rule employed by Grossberg (1976) and others in the study of
competitive learning. In this case usually only the units with the strongest
activation values are allowed to learn.

Representation of the environment It is crucial in the development of
any model to have a clear representation of the environment in which
this model is to exist. In connectionist models we represent the envi-
ronment as a time-varying stochastic function over the space of input
patterns. That is, we imagine that at any point in time there is some
probability that any of the possible set of input patterns is impinging



on the input units. This probability function may in general depend on
the history of inputs to the system as well as outputs of the system. In
practice most connectionist models involve a much simpler characteri-
zation of the environment. Typically the environment is characterized
by a stable probability distribution over the set of possible input patterns
independent of past inputs and past responses of the system. In this
case we can imagine listing the set of possible inputs to the system and
numbering them from 1 to M. The environment is then characterized
by a set of probabilities p, for i = 1, . . ., M. Because each input pattern
can be considered a vector, it is sometimes useful to characterize those
patterns with nonzero probabilities as constituting orthogonal or linearly
independent sets of vectors.

To summarize, the connectionist framework consists not only of a
formal language but also a perspective on our models. Other qualitative
and quantitative considerations arising from our understanding of brain
processing and of human behavior combine with the formal system to
form what might be viewed as an aesthetic for our model-building
enterprises.

Computational Features of Connectionist Models

In addition to the fact that connectionist systems are capable of exploit-
ing parallelism in computation and mimicking brain-style computation,
connectionist systems are important because they provide good solu-
tions to a number of very difficult computational problems that seem
to arise often in models of cognition. In particular they are good at
solving constraint-satisfaction problems, implementing content-ad-
dressable memory-storage systems, and implementing best match; they
allow for the automatic implementation of similarity-based generaliza-
tion; they exhibit graceful degradation with damage or information
overload; and there are simple, general mechanisms for learning that
allow connectionist systems to adapt to their environments.

Constraint Satisfaction Many cogpnitive-science problems are usefully
conceptualized as constraint-satisfaction problems in which a solution
is given through the satisfaction of a very large number of mutually
interacting constraints. The problem is to devise a computational algo-
rithm that is capable of efficiently implementing such a system. Con-
nectionist systems are ideal for implementing such a constraint-
satisfaction system, and the trick for getting connectionist networks to
solve difficult problems is often to cast the problem as a constraint-
satisfaction problem. In this case we conceptualize the connectionist
network as a constraint network in which each unit represents a hypoth-
esis of some sort (for example, that a certain semantic feature, visual
feature, or acoustic feature is present in the input) and in which each
connection represents constraints among the hypotheses. Thus, for
example, if feature B is expected to be present whenever feature A is

present, there should be a positive connection from the unit correspond-
ing to the hypothesis that A is present to the unit representing the
hypothesis that B is present. Similarly if there is a constraint that when-
ever A is present B is expected not to be present, there should be a
negative connection from A to B. If the constraints are weak, the weights
should be small. If the constraints are strong, then the weights should
be large. Similarly the inputs to such a network can also be thought of
as constraints. A positive input to a particular unit means that there is
evidence from the outside that the relevant feature is present. A nega-
tive input means that there is evidence from the outside that the feature
is not present. The stronger the input, the greater the evidence. If such
a network is allowed to run, it will eventually settle into a locally optimal
state in which as many as possible of the constraints are satisfied, with
priority given to the strongest constraints. (Actually, these systems will
find a locally best solution to this constraint satisfaction problem. Global
optima are more difficult to find.) The procedure whereby such a system
settles into such a state is called relaxation. We speak of the system
relaxing to a solution. Thus a large class of connectionist models contains
constraint satisfaction models that settle on locally optimal solutions
through the process of relaxation.

Figure 4.2 shows an example of a simple 16-unit constraint network.
Each unit in the network represents a hypothesis concerning a vertex
in a line drawing of a Necker cube. The network consists of two inter-
connected subnetworks—one corresponding to each of the two global
interpretations of the Necker cube. Each unit in each network is as-
sumed to receive input from the region of the input figure—the cube—
corresponding to its location in the network. Each unit in figure 4.2 is
labeled with a three-letter sequence indicating whether its vertex is
hypothesized to be front or back (F or B), upper or lower (U or L), and
right or left (R or L). Thus, for example, the lower-left unit of each
subnetwork is assumed to receive input from the lower-left vertex of
the input figure. The unit in the left network represents the hypothesis
that it is receiving input from a lower-left vertex in the front surface of
the cube (and is thus labeled FLL), whereas the one in the right sub-
network represents the hypothesis that it is receiving input from a
lower-left vertex in the back surface (BLL). Because there is a constraint
that each vertex has a single interpretation, these two units are con-
nected by a strong negative connection. Because the interpretation of
any given vertex is constrained by the interpretations of its neighbors,
each unit in a subnetwork is connected positively with each of its
neighbors within the network. Finally there is the constraint that there
can be only one vertex of a single kind (for example, there can be only
one lower-left vertex in the front plane FLL). There is a strong negative
connection between units representing the same label in each subnet-
work. Thus each unit has three neighbors connected positively, two
competitors connected negatively, and one positive input from the stim-



Figure 4.2 A simple network repr ing some constraints involved in perceiving a
Necker cube

ulus. For purposes of this example the strengths of connections have
been arranged so that two negative inputs exactly balance three positive
inputs. Further it is assumed that each unit receives an excitatory input
from the ambiguous stimulus pattern and that each of these excitatory
influences is relatively small. Thus if all three of a unit’s neighbors are
on and both of its competitors are on, these effects would entirely cancel
out one ancther; and if there were a small input from the outside, the
unit would have a tendency to come on. On the other hand if fewer
than three of its neighbors were on and both of its competitors were
on, the unit would have a tendency to turn off, even with an excitatory
input from the stimulus pattern.

In the preceding paragraph | focused on the individual units of the
networks. It is often useful to focus not on the units, however, but on
entire states of the network. In the case of binary (on-off or 0-1) units,
there is a total of 2'® possible states in which this system could reside.
That is, in principle each of the 16 units could have either value 0 or 1.
In the case of continuous units, in which each unit can take on any
value between 0 and 1, the system can in principle take on any of an
infinite number of states. Yet because of the constraints built into the
network, there are only a few of those states in which the system will

settle. To see this, consider the case in which the units are updated
asynchronously, one at a time. During each time slice one of the units
is chosen to update. If its net input exceeds 0, its value will be pushed
toward 1; otherwise its value will be pushed toward 0.

Imagine that the system starts with all units off. A unit is then chosen
at random to be updated. Because it is receiving a slight positive input
from the stimulus and no other inputs, it will be given a positive
activation value. Then another unit is chosen to update. Unless it is in
direct competition with the first unit, it too will be tumed on. Eventually
a coalition of neighboring units will be tumed on. These units will tend
to turn on more of their neighbors in the same subnetwork and tum
off their competitors in the other subnetwork. The system will (almost
always) end up in a situation in which all of the units in one subnetwork
are fully activated and none of the units in the other subnetwork is
activated. That is, the system will end up interpreting the Necker cube
as either facing left or facing right. Whenever the system gets into a
state and stays there, the state is called a stable state or a fixed point of
the network. The constraints implicit in the pattern of connections
among the units determine the set of possible stable states of the system
and therefore the set of possible interpretations of the inputs.

Hopfield (1982) has shown that it is possible to give a general account
of the behavior of systems such as this one (with symmetric weights
and asynchronous updates). In particular Hopfield has shown that such
systems can be conceptualized as minimizing a global measure, which
he calls the energy of the system, through a method of gradient descent
or, equivalently, maximizing the constraints satisfied through a method
of hill climbing. In particular Hopfield has shown that the system oper-
ates in such a way as to always move from a state that satisfies fewer
constraints to a state that satisfies more constraints, where the measure
of constraint satisfaction is given by

Gt = 2 ; wa(a(t) + 3 input(tat).

Essentially the equation says that the overall goodness of fit is given by
the sum of the degrees to which each pair of units contributes to the
goodness plus the degree to which the units satisfy the input con-
straints. The contribution of a pair of units is given by the product of
their activation values and the weights connecting them. Thus if the
weight is positive, each unit wants to be as active as possible—that is,
the activation values for these two units should be pushed toward 1. If
the weight is negative, then at least one of the units should be 0 to
maximize the pairwise goodness. Similarly if the input constraint for a
given unit is positive, then its contribution to the total goodness of fit
is maximized by being the activation of that unit toward its maximal
value. If it is negative, the activation value should be decreased toward



0. Of course the constraints will generally not be totally consistent.
Somghmes a given unit may have to be tumed on to increase the
.fur.\ctlon in some ways yet decrease it in other ways. The point is that
it is the sum of all of these individual contributions that the system
seeks to maximize. Thus for every state of the system—every possible
pattern 'of activation over the units—the pattern of inputs and the
connectivity matrix W determine a value of the goodness-of-fit function.
The system processes its input by moving upward from state to adjacent
state until it reaches a state of maximum goodness. When it reaches
su_ch a stable state or fixed point, it will stay in that state and it can be
said to have “settled” on a solution to the constraint-satisfaction prob-
lem or alternatively, in our present case, “settled into an interpretation”
of the input.

‘ It is important to see then that entirely local computational operations

in w.hich each unit adjusts its activation up or down on the basis of it;
net g\gnt. serve to allow the network to converge toward states that
maximize a global measure of goodness or degree of constraint satisfac-
tion. Hopfield’s main contribution to the present analysis was to point
out this basic fact about the behavior of networks with symmetrical
connections and asynchronous update of activations.

To summarize, there is a large subset of connectionist models that
can be @nsidered constraint-satisfaction models. These networks can
.be described as carrying out their information processing by climbing
into states of maximal satisfaction of the constraints implicit in the
network. A very useful concept that arises from this way of viewing
these networks is that we can describe the behavior of these networks
not only in terms of the behavior of individual units but also in terms
of properties of the network itself. A primary concept for understanding
these network properties is the goodness-of-fit landscape over which the
system moves. Once we have correctly described this landscape, we
.have described the operational properties of the system—it will process
mfomﬁon by moving uphill toward goodness maxima. The particular
maximum that the system will find is determined by where the system
starts and by the distortions of the space induced by the input. One of
the very important descriptors of a goodness landscape is the set of
maxima that the system can find, the size of the region that feeds into
each maximum, and the height of the maximum itself. The states them-
selves correspond to possible interpretations, the peaks in the space
correspond to the best interpretations, the extent of the foothills or
skirts surrounding a particular peak determines the likelihood of finding
the peak, and the height of the peak corresponds to the degree to which
the constraints of the network are actually met or altematively to the
goodness of the interpretation associated with the corresponding state.

lntera.ctive P.mteuing One of the difficult problems in cognitive sci-
ence is to build systems that are capable of allowing a large number of

knowledge sources to usefully interact in the solution of a problem.
Thus in language processing we would want syntactic, phonological,
semantic, and pragmatic knowledge sources all to interact in the con-
struction of the meaning of an input. Reddy and his colleagues (1973)
have had some success in the case of speech perception with the Hear-
say system because they were working in the highly structured domain
of language. Less structured domains have proved very difficult to
organize. Connectionist models, conceptualized as constraint-satisfac-
tion networks, are ideally suited for the blending of multiple-knowledge
sources. Each knowledge type is simply another constraint, and the
system will, in parallel, find those figurations of values that best satisfy
all of the constraints from all of the knowledge sources. The uniformity
of representation and the common curréncy of interaction (activation
values) make connectionist systems especially powerful for this domain.

Rapid Pattern Matching, Best-Match Search, Content-Addressable
Memory Rapid patten matching, best-match search, and content-
addressable memory are all variants on the general best-match problem
(compare Minsky and Papert 1969). Best-match problems are especially
difficult for serial computational algorithms (it involves exhaustive
search), but as we have just indicated connectionist systems can readily
be used to find the interpretation that best matches a set of constraints.
It can similarly be used to find stored data that best match some target.
In this case it is useful to imagine that the network consists of two
classes of units, with one class, the visible units, corresponding to the
content stored in the network, and the remaining, hidden units are used
to help store the patterns. Each visible unit corresponds to the hypoth-
esis that some particular feature was present in the stored pattern. Thus
we think of the content of the stored data as consisting of collections
of features. Each hidden unit corresponds to a hypothesis concerning
the configuration of features present in a stored pattern. The hypothesis
to which a particular hidden unit corresponds is determined by the
exact learning rule used to store the input and the characteristics of the
ensemble of stored patterns. Retrieval in such a network amounts to
turning on some of the visible units (a retrieval probe) and letting the
system settle to the best interpretation of the input. This is a kind of
pattern completion. The details are not too important here because a
variety of learning rules lead to networks with the following important

properties:

- When a previously stored (that is, familiar) pattern enters the memory
system, it is amplified, and the system responds with a stronger version
of the input pattern. This is a kind of recognition response.

- When an unfamiliar pattern enters the memory system, it is damp-
ened, and the activity of the memory system is shut down. This is a

kind of unfamiliarity response.



- When part of a familiar pattern is presented, the system responds by
“filling in” the missing parts. This is a kind of recall paradigm in which
the part constitutes the retrieval cue, and the filling in is a kind of
memory-reconstruction process. This is a content-addressable memory
system.

- When a pattern similar to a stored pattern is presented, the system
responds by distorting the input pattern toward the stored pattern. This
is a kind of assimilation response in which similar inputs are assimilated
to similar stored events.

- Finally, if a number of similar patterns have been stored, the system
will respond strongly to the central tendency of the stored patterns,
even though the central tendency itself was never stored. Thus this sort
of memory system automatically responds to prototypes even when no
prototype has been seen.

These properties correspond very closely to the characteristics of human
memory and, 1 believe, are exactly the kind of properties we want in
any theory of memory.

Automatic Generalization and Direct Representation of Similarity
One of the major complaints against Al programs is their “fragility.”
The programs are usually very good at what they are programmed to
do, but respond in unintelligent or odd ways when faced with novel
situations. There seem to be at least two reasons for this fragility. In
conventional symbol-processing systems similarity is indirectly repre-
sented and therefore are generally incapable of generalization, and most
Al programs are not self-modifying and cannot adapt to their environ-
ment. In our connectionist systems on the other hand, the content is
directly represented in the pattern and similar patterns have similar
effects—therefore generalization is an automatic property of connec-
tionist models. It should be noted that the degree of similarity between
patterns is roughly given by the inner product of the vectors repre-
senting the patterns. Thus the dimensions of generalization are given
by the dimensions of the representational space. Often this will lead to
the right generalizations. There are situations in which this will lead to
inappropriate generalizations. In such a case we must allow the system
to learn its appropriate representation. In the next section | describe
how the appropriate representation can be learned so that the correct
generalizations are automatically made.

Leaming A key advantage of the connectionist systems is the fact that
simple yet powerful learning procedures can be defined that allow the
systems to adapt to their environment. It was work on the leaming
aspect of these neurally inspired models that first led to an interest in
them (compare Rosenblatt, 1962), and it was the demonstration that
the learning procedures for complex networks could never be developed

that contributed to the loss of interest (compare Minsky and Papert
1969). Although the perceptron convergence procedure and its variants have
been around for some time, these learning procedures were limited to
simple one-layer networks involving only input and output unit's. There
were no hidden units in these cases and no internal representation. The
coding provided by the external world had to suffice. Nevertheless these
networks have proved useful in a wide variety of applications. Perhaps
the essential character of such networks is that they map similar input
patterns to similar output patterns. This is what allows these networks
to make reasonable generalizations and perform reasonably on patterns
that have never before been presented. The similarity of patterns in the
connectionist system is determined by their overlap. The overlap in
such networks is determined outside the learning system itself—by
whatever produces the patterns.

The constraint that similar input patterns lead to similar outputs can
lead to an inability of the system to learn certain mappings from input
to output. Whenever the representation provided by the outside worl.d
is such that the similarity structure of the input and output patterns is
very different, a network without internal representations (that is, a
network without hidden units) will be unable to perform the necessary
mappings. A classic example of this case is the exclusive-or (XOR)
problem illustrated in table 4.1. Here we see that those patterns thft
overlap least are supposed to generate identical output values. This
problem and many others like it cannot be performed by networks
without hidden units with which to create their own internal represen-
tations of the input patterns. It is interesting to note that if the input
patterns contained a third input taking the value 1 whenever the first
two have value 1, as shown in table 4.2, a two-layer system would be

able to solve the problem.

Table 4.1 XOR Problem

Input Patterns Output Patterns
00 — 0
01 - 1
10 — 1
11 - 0

Table 4.2 XOR with Redundant Third Bit

Input Patterns Output Patterns
000 - 0
010 - 1
100 - 1
m - 0




Minsky and Papert (1969) have provided a careful analysis of condi-
tions under which such systems are capable of carrying out the required
mappings. They show that in many interesting cases networks of this
kind are incapable of solving the problems. On the other hand, as
Minsky and Papert also pointed out, if there is a layer of simple per-
ceptronlike hidden units, as shown in figure 4.3, with which the original
input pattern can be augmented, there is always a recoding (that is, an
internal representation) of the input patterns in the hidden units in
which the similarity of the patterns among the hidden units can support
any required mapping from the input to the output units. Thus if we
have the right connections from the input units to a large enough set
of hidden units, we can always find a representation that will perform
any mapping from input to output through these hidden units. In the
case of the XOR problem, the addition of a feature that detects the
conjunction of the input units changes the similarity structure of the
patterns sufficiently to allow the solution to be learned. As illustrated
in figure 4.4, this can be done with a single hidden unit. The numbers
on the arrows represent the strengths of the connections among the
units. The numbers written in the circles represent the thresholds of
the units. The value of +1.5 for the threshold of the hidden unit ensures
that it will be tumed on only when both input units are on. The value
0.5 for the output unit ensures that it will tumn on only when it receives

Output Patterns

Input Patterns

Figure 4.3 A multilayer network in which input patterns are recoded by internal represen-
tation units

input Units

Figure 4.4 A simple XOR network with one hidden unit

a net positive input greater than 0.5. The weight of -2 from the hidden
unit to the output unit ensures that the output unit will not come on
when both input units are on. Note that from the point of view of the
output unit the hidden unit is treated as simply another input unit. It
is as if the input patterns consisted of three rather than two units.

The existence of networks such as this illustrates the potential power
of hidden units and internal representations. The problem, as noted by
Minsky and Papert, is that whereas there is a very simple guaranteed
learning rule for all problems that can be solved without hidden units,
namely, the perceptron convergence procedure (or the variation re-
ported originally by Widrow and Hoff 1960), there has been no equally
powerful rule for leamning in multilayer networks.

It is clear that if we hope to use these connectionist networks for
general computational purposes, we must have a learning scheme ca-
pable of learning its own internal representations. This is just what we
(Rumelhart, Hinton, and Williams 1986) have done. We have developed
a generalization of the perceptron learning procedure, called the gen-
eralized delta rule, which allows the system to learn to compute arbitrary
functions. The constraints inherent in networks without self-modifying
internal representations are no longer applicable. The basic learning
procedure is a two-stage process. First, an input is applied to the net-
work; then, after the system has processed for some time, certain units
of the network are informed of the values they ought to have at this
time. If they have attained the desired values, the weights are un-
changed. If they differ from the target values, then the weights are
changed according to the difference between the actual value the units
have attained and the target for those units. This difference becomes
an error signal. This error signal must then be sent back to those units
that impinged on the output units. Each such unit receives an error
measure that is equal to the error in all of the units to which it connects
times the weight connecting it to the output unit. Then, based on the
error, the weights into these “second-layer” units are modified, after



which the error is passed back another layer. This process continues
until the error signal reaches the input units or until it has been passed
back for a fixed number of times. Then a new input pattern is presented
and the process repeats. Although the procedure may sound difficult,
it is actually quite simple and easy to implement within these nets. As
shown in Rumelhart, Hinton, and Williams 1986, such a procedure will
always change its weights in such a way as to reduce the difference
between the actual output values and the desired output values. More-
over it can be shown that this system will work for any network
whatsoever.

Minsky and Papert (1969, pp. 231-232), in their pessimistic discussion
of perceptrons, discuss multilayer machines. They state that

The perceptron has shown itself worthy of study despite (and even
because of!) its severe limitations. It has many features that attract
attention: its linearity; its intriguing learning theorem; its clear paradig-
matic simplicity as a kind of parallel computation. There is no reason
to suppose that any of these virtues carry over to the many-layered
version. Nevertheless, we consider it to be an important research prob-
lem to elucidate (o reject) our intuitive judgment that the extension is
sterile. Perhaps some powerful convergence theorem will be discovered,
or some profound reason for the failure to produce an interesting “learn-
ing theorem” for the multilayered machine will be found.

Although our learning results do not guarantee that we can find a so-
lution for all solvable problems, our analyses and simulation results
have shown that as a practical matter, this error propagation scheme
leads to solutions in virtually every case. In short | believe that we have
answered Minsky and Papert’s challenge and have found a learning
result sufficiently powerful to demonstrate that their pessimism about
learning in multilayer machines was misplaced.

One way to view the procedure | have been describing is as a parallel
computer that, having been shown the appropriate input/output ex-
emplars specifying some function, programs itself to compute that func-
tion in general. Parallel computers are notoriously difficult to program.
Here we have a mechanism whereby we do not actually have to know
how to write the program to get the system to do it.

Graceful Degradation Finally connectionist models are interesting can-
didates for cognitive-science models because of their property of grace-
ful degradation in the face of damage and information overload. The
ability of our networks to learn leads to the promise of computers that
can literally learn their way around faulty components because every
unit participates in the storage of many patterns and because each
pattern involves many different units, the loss of a few components
will degrade the stored information, but will not lose it. Similarly such
memories should not be conceptualized as having a certain fixed ca-
pacity. Rather there is simply more and more storage interference and

blending of similar pieces of information as the memory is overloaded.
This property of graceful degradation mimics the human response in
many ways and is one of the reasons we find these models of human
information processing plausible.

4.2 The State of the Art

Recent years have seen a virtual explosion of work in the connectionist
area. This work has been singularly interdisciplinary, being carried out
by psychologists, physicists, computer scientists, engineers, neuros-
cientists, and other cognitive scientists. A number of national and in-
ternational conferences have been established and are being held each
year. In such environment it is difficult to keep up with the rapidly
developing field. Nevertheless a reading of recent papers indicates a
few central themes to this activity. These themes include the study of
learning and generalization (especially the use of the backpropagation
learning procedure), applications to neuroscience, mathematical prop-
erties of networks—both in terms of learning and the question of the
relationship among connectionist style computation and more conven-
tional computational paradigms—and finally the development of an
implementational base for physical realizations of connectionist com-
putational devices, especially in the areas of optics and analog VLSI.

Although there are many other interesting and important develop-
ments, 1 conclude with a brief summary of the work with which | have
been most involved over the past several years, namely, the study of
learning and generalization within multilayer networks. Even this sum-
mary is necessarily selective, but it should give a sampling of much of
the current work in the area.

Learning and Generalization

The backpropagation learning procedure has become possibly the single
most popular method for training networks. The procedure has been
used to train networks on problem domains including character recog-
nition, speech recognition, sonar detection, mapping from spelling to
sound, motor control, analysis of molecular structure, diagnosis of eye
diseases, prediction of chaotic functions, playing backgammon, the
parsing of simple sentences, and many, many more areas of application.
Perhaps the major point of these examples is the enormous range of
problems to which the backpropagation learning procedure can usefully
be applied. In spite of the rather impressive breadth of topics and the
success of some of these applications, there are a number of serious
open problems. The theoretical issues of primary concern fall into three
main areas: (1) The architecture problem—are there useful architectures
beyond the standard three-layer network used in most of these areas
that are appropriate for certain areas of application? (2) The scaling
problem—how can we cut down on the substantial training time that



seems to be involved for the more difficult and interesting problem
application areas? (3) The generalization problem—how can we be cer-
tain that the network trained on a subset of the example set will gen-
eralize correctly to the entire set of exemplars?

Some Architecture

Although most applications have involved the simple three-layer back-
propagation network with one input layer, one hidden layer, and one
output layer of units, there have been a large number of interesting
architectures proposed—each for the solution of some particular prob-
lem of interest. There are, for example, a number of “special” architec-
tures that have been proposed for the modeling of such sequential
phenomena as motor control. Perhaps the most important of these is
the one proposed by Mike Jordan (1986) for producing sequences of
phonemes. The basic structure of the network is illustrated in figure
4.5. It consists of four groups of units: Plan units, which tell the network
which sequence it is producing, are fixed at the start of a sequence and
are not changed. Context units, which keep track of where the system
is in the sequence, receive input from the output units of the systems
and from themselves, constituting a memory for the sequence produced
thus far. Hidden units combine the information from the plan units with
that from the context units to determine which output is to be produced
next. Output units produce the desired output values. This basic struc-
ture, with numerous variations, has been used successfully in produc-
ing sequences of phonemes (Jordan 1986), sequences of movements
(Jordan 1989), sequences of notes in a melody (Todd 1989), sequences
of tums in a simulated ship (Miyata 1987), and for many other appli-
cations. An analogous network for recognizing sequences has been used
by Elman (1988) for processing sentences one at a time, and another
variation has been developed and studied by Mozer (1988). The archi-
tecture used by Elman is illustrated in figure 4.6. This network also
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Figure 4.5 A recurrent network of the type developed by Jordan (1986) for leaming to
perform sequences

involves three sets of units: input units, in which the sequence to be
recognized is presented one element at a time; a set of context units that
receive inputs from and send inputs to the hidden units and thus
constitute a memory for recent events; a set of hidden units that combine
the current input with its memory of past inputs to either name the
sequence, predict the next element of the sequence, or both.

Another kind of architecture that has received some attention has
been suggested by Hinton and has been employed by Elman and Zipser
(1987), Cottrell, Munro, and Zipser (1987), and many others. It has
become part of the standard toolkit of backpropagation. This is the so-
called method of autoencoding the pattern set. The basic architecture
in this case consists of three layers of units as in the conventional case;
however, the input and output layers are identical. The idea is to pass
the input through a small number of hidden units and reproduce it
over the output units. This requires the hidden units to do a kind of
nonlinear-principle components analysis of the input patterns. In this
case that corresponds to a kind of extraction of critical features. In many
applications these features turn out to provide a useful compact descrip-
tion of the patterns. Many other architectures are being explored. The
space of interesting and useful architecture is large and the exploration
will continue for many years.

The Scaling Problem .

The scaling problem has received somewhat less attention, although it
has clearly emerged as a central problem with backpropagationlike
learning procedures. The basic finding has been that difficult problems
require many learning trials. For example, it is not unusual to require
tens or even hundreds of thousands of pattern presentations to leam
moderately difficult problems--that is, those whose solution requires
tens of thousands to a few hundred thousand connections. Large and

Output Units

Input Units Context Units

Figure 4.6 A recurrent network of the type employed by Elman (1988) for leaming to
recognize sequences



tast computers are required tor such problems, and it s impractical tor
problems requinng more than a lew hundred thousand connections, |t
i~ theretore a matter of concern 1o tearn to speed up the learning, so
that it can learn more ditticult problems in a more reasonable number
ot exposures. The proposed solutions tall into two basic categornies. One
line of attackas to improve the learning procedure cither by optinuzing
the parameters dvnamically (that is, change the learning rate system-
atically during learning) or by using more intormation in the weight-
changing procedure (that is, the so-called second-order backpropagation
in which the sccond denvatives are also computed). Although some
improvements can be attained through the use of these methods, in
certamn problem domains the basic scaling problem still remains. It
seems that the basic problem is that ditticult problems require a large
number of exemplars, however cetficiently cach exemplar is used. The
other view grows from viewing learming and evolution as continuous
with one another. On this view the fact that networks take a long time
to learn is to be expected because we normally compare their behavior
to organisms that have long evolutionary histories. On this view the
solution is to start the system at places that are as appropriate as possible
tor the problem domain to be learned. Shepherd (1989) has argued that
such an approach is critical tor an appropriate understanding ot the
phenomena being modeled.

A tinal approach to the scale problem is through modularity. It is
possible to break the problem into smaller subproblems and train sub-
networks on these subproblems. Networks can then finally be assem-
bled to solve the entire problem atter all of the modules are trained. An
advantage of the connectionist approach in this regard is that the orig-
inal training needs to be only approaimately right. A tinal round ot
training can be used to learn the interfaces among the modules.

The Generalization Problem

One final aspect of learning that has been looked at is the nature ot
generalization. It is clear that the most important aspect of networks is
not that they learn a set of mappings but that they learn the function
imphiatin the exemplars under study in such a way that they respond
properly to those cases not yet observed. Although there are many
cases of successful generalization (compare the learning of spelhing with
phoneme mappings in Sejnowski and Rosenberg’s Nettalk (1987), there
are a number of cases in which the networks do not generalize correctly
(compare Denker et al. 1987). One simple way to understand this is to
note that for most problems there are enough degrees of freedom in
the network that there are a large number of genuinely different solu-
tions to the problems, and each solution constitutes a difierent way of
generalizing to the unseen patterns. Clearly not all of these can be
correct. 1 have proposed a hypothesis that shows some promise in
promoting better generalization (Rumelhart 1988). The basic idea is this:

The problem ot gencrabization s essentially the nduction problem.
Caven a set of observations, what s the appropriate prinaple that
apphies to all cases? Note that the netwaork at any point i time can be
viewed as g speatication ot the inductive hypothesis. Hhave proposed
that we tollow a version of Occam'’s razor and select the simplest, maost
robiist network that s consistent with the observations made. The as-
samption of robustness is simply an embodiment ol a kind ot cnnhngity
assumption that small variations in the input patterns should h.wc h‘(llc
ettect on the output and on the performance of the system. The sim-
plicity assumption s simplv— of all networks that correetly .).ccnunt tor
the input data - to choose that net with the tewest hidden units, fewest
connections, most symmetries among the weights, and so on. | have
tormalized this procedure and moditied the backpropagation Im“lrping
procedure so that it preters simple, robust networks and, all things
being equal, will select those networks. In many cases it t.urns out that
these are just the networks that do the best job generalizing,.
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