Psych 711, Homework 2
Each part of the homework has multiple questions to be answered and/or other things to hand in. Be careful not to leave out anything in preparing your responses.

Part 1: Hebb and Delta Rules [50 points]

This part of the homework requires you to demonstrate an understanding of both the Hebb and Delta learning rules in feedforward pattern associator networks, and how these procedures extract regularities from (possibly noisy) examples.

You will need to download the file 8x8.zip from the course web page and unzip it into your Lens Examples subdirectory (or wherever you'd like to run the simulations from). This should give you the following six files

8x8-imposs.ex
8x8-li.ex
8x8-orth.ex
8x8.tcl
8x8lin.in
8x8sig.in
These files define two versions of a pattern associator with 8 inputs and 8 outputs: one with linear units (8x8lin.in) and one with sigmoid units (8x8sig.in). Three example files are loaded by each of the networks:

· 8x8-orth.ex (loaded as example set "orth") in which the input patterns are orthogonal

· 8x8-li.ex (loaded as set "li") in which the input patterns are non-orthogonal but linearly independent

· 8x8-imposs.ex (loaded as set "imposs") that is impossible to learn.

First, start up lens, click on "Run Script", and select 8x8lin.in to load the linear version of the pattern associator. The Link Viewer and a graph that plots the network error will open automatically. Note that the training set is initially the orthogonal examples ("orth") and that the weights in the network are all initialized to 0.0. Thus, if you open the Unit Viewer and click on each of the three examples, you'll see that the output of each unit for each example is 0.0 because, for linear units, the activation of a unit is equal to its net input, which is 0.0 if all of its weights are 0.0. Note that, if you move your mouse over the units, the input activations range from -1 to 1 whereas the targets of the output units are 0 or 1. You can reset the weights back to all zeros at any time by clicking on "Reset Network" on the main panel.

Now click on "Train Network". Because "Weight Updates" is set to 1, this will train the network on one presentation of each of the three training examples (called an "epoch"). The network is training with the Delta rule but (as will be discussed in class), the result is identical to that for the Hebb rule when training for one presentation of orthogonal patterns. Note that the weights now have a range of values.

1A [5 pts.] Explain why the weight from input:0 to output:0 is equal to 0.375, and why the weight from input:1 to output:4 is equal to -0.25. To do this, you will have to consider the training patterns, the learning rate, and the fact that the squared error function applies an extra factor of 2.0 to the weight changes.

Save these weights by clicking on "Save Weights" and replacing the Section field with hebb-orth.wt. The file will be saved into the current directory (shown in the panels above). [Note: Lens doesn't handle paths or filenames with spaces well. If you get an error when attempting to save a weight file, it may be because you didn't remove the full path from the Selection field and it contains one or more spaces (e.g., C:\Documents and Settings\Tim\Lens\hebb-orth.wt).] You will also need to capture the Link Viewer display (to hand in), using the Snip tool or any other screen-capture tool on your computer. The link values are easier to see if you first, switch to "Hinton Diagram" under the "Palette" menu of the Link Viewer.

1B [5 pts.] If you click on "Train Network" again, the weights remain unchanged. Why? What would have happened if the Hebb rule had been applied instead?

Now click on "Reset Network" to reset the weights to zero, and switch to training on the linearly independent patterns by running "useTrainingSet li" from the command-line interface. Then train for 1 epoch, save the weights as hebb-li.wt, and print them. (Note that, even though the patterns are not all orthogonal, the weights after 1 epoch are equivalent to Hebbian learning here because Lens is not updating the weights after each example, but only after all three examples are run.) Now continue training for 9 more epochs (total of 10), save the weights as delta-li.wt, and print them.

1C [10 pts.] Describe and explain the similarities and differences among the weights equivalent to those that would be produced by the Hebb rule (hebb-li.wt) and those produced by the Delta rule (delta-li.wt) when training on the linearly independent set.

Reset the network and run "noiseOn" from the command line. This adds noise to the inputs and target outputs when each example is presented. Also reset the error graph ("Graph 0") by selecting "Clear" under the "Graph" menu of the graph. Then train for 30 epochs. (You can do this by clicking "Train Network" 30 times, or by setting "Weight Updates" to 30 and clicking "Train Network" once. Also, be sure to hit "Enter" after changing the value in the Lens interface, otherwise the value won't actually be changed.) You'll see (in the error graph) that the error jumps around wildly over the course of training. Now reset the network, set the learning rate to 0.005, and retrain the network for 30 epochs. Note that learning is now much more effective. Finally, reset the network one more time, set the learning rate to 0.001, and retrain for 30 epochs.

1D [10 pts.] Why was training with the intermediate learning rate more effective than either the higher or lower rate? Include a picture of the error graph (again using screen-capture or Snip tool).

Now load the version of the pattern associator with sigmoid units by clicking on "Run Script" and selecting 8x8sig.in. This creates a new network with zero weights and "li" as the training set. Train this network for 40 epochs. Save the resulting weights as delta-li-sig.wt and print them.

1E [10 pts.] Why is learning so much slower using sigmoid units than when using linear units? Describe and explain the similarities and differences in the resulting sets of weights.

Finally, reset the network and switch to training on the "imposs" set. Train for 40 epochs, print the weights, and save them as delta-imposs-sig.wt.

1F [10 pts.] Why does learning fail here, even with the Delta rule? Try to explain the pattern of weights that are produced.

In addition to your written answers to the questions above, please hand in a picture of the Link Viewer diagrams (using the "Hinton Diagram" palette) for hebb-orth.wt, hebb-li.wt, delta-li.wt, delta-li-sig.wt, and delta-imposs-sig.wt, as well as the error graph from 1D
Part 2: Learning and Generalization [50 points]

In this homework, you will apply what you have learned to some psychological domain of your own choosing. Design a set of input-output pattern pairs representing two types of information about some set of objects. For example, if the objects were musical instruments, the inputs might specify features of the shape and appearance of the instrument and the outputs might specify features of the sounds that the instrument makes (OK, the domain needn't be very psychological....). Or the inputs might represent the spelling of a word and the outputs might represent its pronunciation.

Make up a set of 8-10 pairs, each consisting of an 8 element input vector and an 8 element output vector. For the instrument example, one object might be a violin:

name: violin
I: 1 0 0 1 0 1 1 0
T: 1 0 0 1 1 0 0 1
;
Use 1's and 0's in the input patterns rather than +1's and -1's, and make sure each input pattern has at least one 1 in it. For the elements of the vectors, try to identify features (e.g., has-strings, has-frets, is-long-and-thin) that allow you to distinguish each item, both in terms of its input characteristics and its output characteristics. You can use slightly less than 8 features by just leaving a few 0's in the input or output pattern. Thus, if you could only think of 5 different sound features, you might have 0's as the last 3 features of every object:

name: violin
I: 1 0 0 1 0 1 1 0
T: 1 0 0 1 1 0 0 0
;
Try to design your patterns so that they capture both the strengths and the weaknesses of pattern associator models, with attention to both learnability and generalization. The interestingness of the results you achieve with learning will depend to a large extent on the properties of the patterns you use, so take some care in designing them.

1A [5 pts.] Hand in a table displaying the set of patterns you have constructed, and explain what led you to design them the way that you did

Train an 8x8 pattern associator with the Delta rule on all but two of your patterns in each of two conditions: (1) using linear units, and (2) using sigmoid units. To do this, you will need to create two text files: test.ex containing the 2 examples withheld from training, and train.ex containing all the remaining examples. (Feel free to use other names for these files if you wish, but then change the commands below accordingly.) The examples should be formatted as shown above for violin (and as in the other example files used in this homework). In particular, for each example, the input values are preceded by I:, the target output values are preceded by T:, and there is a final semicolon at the end.

Now load either 8x8lin.in or 8x8sig.in (from the files disseminated for Homework 3) and run the following commands from the command-line interface:

loadExamples train.ex -s train
useTrainingSet train
loadExamples test.ex -s test
useTestingSet test
1B [10 pts.] Examine how well each network does in learning the set of training pairs using each unit activation function (linear and sigmoid), and explain its successes and failures. Are there any differences between the two functions in how well the patterns can be learned? Be sure for both functions to run enough epochs, and to use a small enough learning rate, so that you have reached a stable configuration of weights.

1C [20 pts.] Choosing one of the two activation functions, examine the time course of learning. Try to identify what aspects of your patterns the network learns rapidly and what aspects it learns less rapidly. Describe what you observe and try to explain why it happens.

1D [15 pts.] Now, for both the linear and sigmoid network, consider how well the trained network generalizes to the two patterns that you set aside. (To do this, open the Unit Viewer and select "Testing Set" from the "Example Set" menu, and then click on the examples.) Report what happens when you test with these, and explain the results.

