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People are generally faster and more accurate to name or categorize objects at the basic level (e.g., dog)
relative to more general (animal) or specific (collie) levels, an effect replicated in Experiment 1 for
categorization of object pictures. To some, this pattern suggests a dual-process mechanism, in which
objects first activate basic-level categories directly and later engage more general or specific categories
through the spread of activation in a processing hierarchy. This account is, however, challenged by data
from Experiment 2 showing that neuropsychological patients with impairments of conceptual knowledge
categorize more accurately at superordinate levels than at the basic level—suggesting that knowledge
about an object’s general nature does not depend on prior basic-level categorization. The authors consider
how a parallel distributed processing theory of conceptual knowledge can reconcile the apparent
discrepancy. This theory predicts that if healthy individuals are encouraged to make rapid categorization
responses, the usual basic � general advantage should also reverse, a prediction tested and confirmed in
Experiment 3. Implications for theories of visual object recognition are discussed.
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This article addresses a paradox in the study of human concep-
tual knowledge that arises when two separate literatures are con-
sidered side-by-side. The first literature concerns the basic-level
advantage: Rosch et al.’s (1976) discovery that, of all the various
categories to which a given item could belong (e.g., “collie,”
“dog,” “canine,” “mammal,” “animal,” “pet”), some appear to be
more readily accessible to the human mind than others. Among
other things, Rosch and colleagues (Mervis & Rosch, 1981; Rosch,
1978; Rosch et al., 1976) showed that people are faster to catego-
rize most items at an intermediate level of specificity (such as
“dog”) than at more general (i.e., “animal”) and more specific (i.e.,
“collie”) levels; that in free speech, people prefer to use such
names over more general or specific labels; and that the first nouns
children typically acquire are also at this level. Such basic-level
effects are among the best known and most robust phenomena in
the study of human categorization (Johnson & Mervis, 1997;
Murphy & Brownell, 1985; Murphy & Lassaline, 1997; Tanaka &
Taylor, 1991; Tversky & Hemenway, 1984).

The second literature concerns the gradual erosion of conceptual
knowledge in a progressive neurological condition called semantic

dementia (SD; Garrard & Hodges, 2000; Hodges, Garrard, &
Patterson, 1998; Snowden, Goulding, & Neary, 1989). Patients
with SD exhibit a progressive and eventually profound deteriora-
tion of knowledge about the meanings of words and objects,
together with a remarkable sparing of many other cognitive abil-
ities until late in the course of the disease (Patterson & Hodges,
2000). The syndrome is associated with circumscribed atrophy of
the anterior temporal cortex (Garrard & Hodges, 2000; Mummery
et al., 2000; Nestor, Fryer, & Hodges, 2006). As Warrington
(1975) noted in one of the first experimental investigations of SD,
knowledge about general (i.e., superordinate) concepts appears to
be considerably less vulnerable in the disorder than knowledge
about more specific concepts. When sorting words or pictures, SD
patients are more accurate when asked to sort on the basis of
general criteria (e.g., “living” vs. “manmade”) than on basic-level
criteria (e.g., “car” vs. “boat”; Hodges, Graham, & Patterson,
1995; Rogers, Lambon Ralph, Garrard, et al., 2004). When SD
patients are asked to name pictures of objects, as the disease
progresses, an object like a duck that typically yields subordinate-
level names in normal individuals (i.e., duck) typically gives way
to a basic-level response such as bird, which in turn typically gives
way to a more general response such as animal (Hodges et al.,
1995; Saffran & Schwartz, 1994; Schwartz, Marin, & Saffran,
1979; Warrington, 1975). In drawing tasks, patients frequently
omit properties specific to a particular concept (e.g., the udder of
a cow, the hump on a camel), but rarely do they omit properties
common to the category superordinate (e.g., the eyes of the camel,
the mouth of the cow; Bozeat et al., 2003). These and a host of
other similar phenomena documented in SD (Adlam, Patterson,
Rogers, Salmond, & Hodges, 2006; Bozeat, Lambon Ralph, Patter-
son, Garrard, & Hodges, 2000; Hodges, Spatt, & Patterson, 1999;
Rogers, Lambon Ralph, Hodges, & Patterson, 2003, 2004) suggest
that, as the conceptual knowledge system deteriorates, what is
retained is increasingly restricted to the general and typical.
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Both sets of phenomena have been explained with reference to
spreading-activation models derived from Collins and Quillian’s
(1969; Collins & Loftus, 1975; Quillian, 1968) influential theory,
an effort that nicely illustrates the paradox. In spreading-activation
theories, conceptual knowledge is stored as a system of proposi-
tions organized hierarchically in memory. Concepts—mental rep-
resentations of categories—occupy nodes in the hierarchy, which
are linked together by class-inclusion propositions called ISA links.
For instance, the knowledge that a canary is a kind of bird is
represented by connecting the node for canary to the node for bird
with a class-inclusion (i.e., ISA) link; knowledge that birds are
animals is stored by connecting the bird node to the animal node,
and so on. Other facts are stored as predicates attached to the
various nodes—for instance, to store the information that a canary
can sing, the model attaches the predicate can sing to the canary
node; and to store the information that all animals can move, the
predicate can move is attached to the animal node. To make
inferences about the properties of a given concept such as canary,
the model first retrieves all of the predicates stored directly with
the corresponding node (e.g. can sing); but activation then spreads
upward along the ISA links so that the predicates attached to more
inclusive concepts also get attributed to the probe concept. For
canary, activation first spreads to the bird node, supporting the
inference that the canary can fly, and then up to the animal node,
supporting the inference that the canary can move.

In one influential account of basic-level effects, Jolicoeur,
Gluck, and Kosslyn (1984) proposed that certain nodes within a
Quillian-like processing hierarchy serve as “entry points” for prob-
ing the semantic network. Visual stimuli are first classified into
one of these entry-level categories by means of a perceptual
processing mechanism so that any information stored directly with
the corresponding entry-level node becomes available earliest in
processing. Additional information about the stimulus becomes
available later, as activation spreads upward from the entry point
toward more inclusive concepts or downward toward more spe-
cific concepts. Basic-level effects are observed for typical category
members because the basic-level category nodes serve as the
entry-point for such items: For instance, a visual stimulus such as
a robin first activates the bird node, providing rapid access to the
name “bird” and other typical bird properties (i.e., has wings and
can fly). Retrieval of properties that the robin shares with all
animals takes longer as it requires a search of the semantic network
upward from the entry point. Retrieval of properties idiosyncratic
to the robin takes longer either because nodes below the entry
point must be searched or because more specific classification
requires more extensive visual processing (Collin & McMullen,
2005; Murphy & Smith, 1982). Jolicoeur et al. (1984) further
suggested that atypical category members fail to show a basic-
level advantage because their entry-points are specific rather than
basic. For example, the entry level for a picture of a penguin would
be the node corresponding to penguin rather than the bird node that
serves as the entry point for more typical birds.

Warrington (1975) also used the Collins and Quillian (1969)
framework to explain how patients with SD retain knowledge of
superordinate category information even as they lose knowledge of
more specific concepts/features. She suggested that, in the healthy
system, the hierarchy is probed from the top down—so that, to
retrieve information about a canary, activation begins with a gen-
eral category like animal, flows downward to bird, and finally to

canary. In SD, the disease process degrades the processing hier-
archy from the bottom up—first destroying very specific nodes,
then intermediate nodes, and only affecting the most general nodes
in the most severe phases of the disease. This suggestion neatly
explained her initial observations of a fine-to-coarse order of
knowledge disintegration in SD and could be extended to account
for the now comprehensive documentation of such effects in SD
across a very broad variety of tasks.

The paradox, then, is this: To explain basic-level advantages, the
entry-level theory proposes that visual stimuli are first classified at
an intermediate level (for typical items) or a subordinate level (for
atypical items), and that retrieval of more superordinate informa-
tion requires the spread of activation through a processing hierar-
chy. Yet patients with SD appear to retain superordinate-level
knowledge at a stage when they fail to retrieve intermediate- and
specific-level information—suggesting that access to such super-
ordinate information does not require prior activation of more
specific entry-level concepts. To explain the latter result, War-
rington (1975) proposed that the taxonomy is probed from the top
down—but if this were the case, it is not clear why the intact
semantic system typically retrieves information most rapidly at the
basic level.

The contradictory findings are also puzzling from the perspec-
tive of the other prominent theory of basic-level effects, the dif-
ferentiation theory proposed by Murphy and colleagues (Murphy,
1991, 2002; Murphy & Brownell, 1985; Murphy & Lassaline,
1997). This view contends that basic categories are not “privi-
leged” in processing but that basic-level advantages arise as a
consequence of their structural properties in a system that activates
category representations at all levels of specificity in parallel.
Specifically, basic-level categories are both distinct and informa-
tive. More general categories can be quite distinct from one an-
other—for instance, the category “furniture” shares little in com-
mon with the category “animal”—but these categories are not very
informative: Given the information that something is a piece of
furniture, there are relatively few inferences one can make about
its other properties (Rosch, Mervis, et al., 1976). More specific
categories are very informative—when told something is a rocking
chair, one can infer many of its properties—but they are not very
distinctive: Rocking chairs share many properties with other kinds
of chairs and so may be difficult to distinguish from them. Basic-
level categories are both distinct and informative and so provide an
especially useful means of “carving the world at its joints.” These
differing structural properties may influence the speed with which
information is retrieved across different levels. For instance, the
superordinate level may be comparatively slow to activate because
it provides a rather poor match to any particular stimulus; the
subordinate level may provide a slow response because it requires
resolution of competition amongst many similar alternatives; but
the basic level, as in the Goldilocks story, will be “just right” (i.e.,
fastest because of its informative and distinctive properties).

The differentiation theory is appealing for several reasons: It can
explain why basic-level advantages are not observed for atypical
category members (Murphy & Brownell, 1985) and why, for some
concepts (e.g., chicken), participants may be faster to categorize at
both subordinate and superordinate levels than at the basic level
(Rips, Shoben, & Smith, 1973). Furthermore its basic tenets have
been tested in artificial category-learning experiments, in which
the structural properties of the to-be-learned categories were ma-
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nipulated by the experimenters, with results generally supporting
the theory (Mervis & Crisafi, 1982; Murphy, 1991; Murphy &
Smith, 1982). Perhaps most importantly, the differentiation theory
explains why some categories are more rapidly accessed than
others and links this explanation to Rosch’s (1978) original insight
that basic categories capture the most information with the least
redundancy. Despite these virtues, observations from SD still pose
a puzzle for the differentiation theory: If basic categories maxi-
mize information and distinctiveness, and if these characteristics
make basic-level categories easier to activate in the healthy sys-
tem, then why is basic-level information more vulnerable to se-
mantic impairment than the less-informative superordinate cate-
gory representations?

In this article we attempt to resolve this seeming contradiction, and
in so doing will offer an explanation of the basic-level advantage that
builds upon the differentiation theory but extends it in important
respects. Our explanation is based upon a parallel distributed process-
ing (PDP) theory of conceptual knowledge, described in previous
work (McClelland & Rogers, 2003; Rogers et al., 2004; Rogers &
McClelland, 2004). Rogers and McClelland (2004) showed how the
key factors that give rise to basic-level effects under the differentiation
theory—informativeness and distinctiveness—also produce basic-
level advantages in a simple model implementation of the theory. In
this sense, the PDP account is very similar in spirit to the differenti-
ation theory. The particular mechanisms that give rise to this effect,
however, differ somewhat from those alluded to in the differentiation
theory; and here we consider whether these mechanisms provide a
means of resolving the apparent paradox.

We begin by establishing experimentally that there really is a
paradox. Although the extensive literature on SD strongly suggests
that knowledge about broad categories is less vulnerable than knowl-
edge about more specific categories, no study has previously tested
whether the basic-level advantage observed in healthy adults is pre-
served, diminished, eliminated, or reversed in patients with SD. In
Part 1, we replicate Rosch’s (1976) finding of a basic-level advantage
for category verification in a sample of healthy older adults. We then
test category verification for the same materials in a case series of
patients with SD and investigate how the basic-level effect changes
with increasingly severe semantic impairment. In Part 2, we consider
an explanation of basic-level effects arising from the PDP theory of
conceptual knowledge, which suggests how such effects can be rec-
onciled with the pattern of semantic impairment typically observed in
SD (Rogers & McClelland, 2004). We show that this explanation
makes counterintuitive predictions about the time course of normal
processing in the category-verification task. These predictions differ
from those offered by the entry-level theory of the basic-level advan-
tage but are consistent with a differentiation-like explanation, couched
within a PDP framework. In Part 3, we test the predictions in a new
behavioral paradigm. Following these experiments, we consider im-
plications of these findings for hypotheses about the interaction be-
tween mechanisms of visual categorization and semantic retrieval and
processing.

Part 1: The Impact of Category Level on Normal and
Semantically Impaired Category Verification

Experiment 1: Category Verification in Healthy Adults

The aim of the first experiment was to replicate the common
finding of a basic-level advantage for category verification in a set

of stimuli for later use in patient testing. In this task, participants
viewed a category name such as “bird,” “robin,” or “animal” on a
computer screen, followed by a color photograph of a common
object. Their task was to indicate by buttonpress, as quickly and as
accurately as possible, whether the item in the photograph be-
longed to the category named. Category labels were either specific
names (e.g., “robin,” “yacht”), basic-level names (e.g., “bird,”
“boat”), or superordinate names (e.g., “animal,” “vehicle”), and we
measured the speed and accuracy of responses at these three
different levels of specificity.

Method

Participants. Participants (N � 28) were 14 men and 14
women between the ages of 55 and 75 (M � 67) selected from the
volunteer participant pool at the Medical Research Council (MRC)
Cognition and Brain Sciences Unit.

Stimuli. Stimuli were 72 color photographs of animals and
vehicles. They included a range of animals and vehicles for clas-
sification at the general level; a set of dogs, birds, cars, and boats
for classification at the basic level; and three different photographs
for each of eight specific categories: Pekinese, Labrador, king-
fisher, robin, yacht, ferry, BMW, and Morris (a familiar make of
car in the United Kingdom). Each photograph appeared once as a
target and once as a distractor, yielding 144 trials total. In the
specific conditions, distractors were always items from the same
basic-level category as the target; for instance, if the category
name was “yacht,” the distractor was a photograph of a different
kind of boat. In the basic-level condition, distractors were always
from the same superordinate category as the target: For the cate-
gory name “boat,” the distractor was always another kind of
vehicle. For the general condition, distractors were selected from a
different superordinate category than the target (e.g., for “vehicle,”
the distractor could be an animal or plant).

Procedure. Words and pictures were presented to participants
on a computer monitor running the freely available DMDX
experimental-psychology software package. On each trial, partic-
ipants viewed a fixation point followed by a category name pre-
sented at fixation for 1 s. The word was followed by a blank screen
for 500 ms, and this in turn was followed by a matching or
nonmatching color photograph that remained onscreen until a
response was detected. Responses were recorded by buttonpress on
a computer mouse; participants were instructed to press the left
mouse button if they believed the item in the photograph was a
member of the category named and the right button otherwise. All
trials were ordered randomly for each participant. Reaction times
and accuracy were recorded by DMDX.

Results

We used two measures to investigate the basic-level advantage
in this task: reaction time for correct responses and d� as a measure
of accuracy for discriminating targets from distractors in each
condition. As shown in Figure 1, both measures showed a basic-
level advantage. Repeated-measures analyses of variance
(ANOVAs) with category level (specific, basic, or general) treated
as a three-level within-subjects factor showed a main effect of
category level on RT, F(2, 54) � 5.0, p � .02, �p

2 � 0.16, and
accuracy, F(2, 54) � 4.0, p � .04, �p

2 � 0.24. Planned-
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comparisons paired-sample t tests showed that participants were
significantly faster and more accurate in the basic-level than in the
general level ( p � .005 for speed, p � .009 for accuracy) and were
significantly faster in the basic than in the specific condition ( p �
.03), with a trend toward greater accuracy in this contrast as well
( p � .08). There were no reliable differences in speed or accuracy
between specific and general conditions.

In sum, the results, not surprisingly, replicate a very robust
result: Healthy participants are faster and more accurate to cate-
gorize visually presented objects at the basic level than at more
general and more specific levels. For these particular stimuli,
participants were equally fast and equally accurate in classifying at
the general and specific levels, indicating that these conditions
were matched for overall difficulty.

Experiment 2: Category Verification in SD

The aim of Experiment 2 was to determine whether the advan-
tage for categorization at the basic level observed in healthy older
adults in Experiment 1 persists in SD, or whether—as expected on
the basis of previous studies of conceptual degradation in this
condition—disease progression in fact engenders a reversal of the
normal basic � general advantage. Eight patients with SD viewed
the same set of word–photograph pairs used in the previous ex-
periment and were asked to decide for each whether the photo-
graph matched the word. To elicit the best performance possible,
we did not subject the patients to any time pressure, and reaction
times (RTs) were not taken. We then measured the accuracy of
their decisions for specific, basic-level, and general category
names.

Method

Participants. Participants were 8 patients diagnosed with SD
according to both cognitive and neuroradiological criteria as out-
lined by Hodges, Patterson, Oxbury, and Funnell (1992), and who
were identified through memory-disorder clinics in the United
Kingdom. Basic neuropsychological data collected at approxi-
mately the same time period as the experimental testing session are
shown in Table 1. Because of differences in the routine test

batteries administered in Cambridge, Bath, and Manchester, scores
on some tests were not available within the same year of testing for
patients BS and EK; in these cases, we have recorded scores taken
approximately 2 years before assessment on the category-
verification task. The table also lists means and standard deviations
taken from approximately age-matched healthy controls, collected
in previous experiments from volunteers in the MRC participant
pool.

Scores on the Mini-Mental State Examination provide a general
measure of cognitive status; all patients showed impairment on this
measure. The Rey–Osterrieth Complex Figure Test (ROCF; Os-
terrieth, 1944; Rey, 1941) provides a basic measure of visuospatial
abilities, as do the two subtests of the Visual Object and Space
Perception (VOSP; Warrington & James, 1991) battery. All pa-
tients scored normally on these tasks, with the single exception of
BS who fell just below the cutoff on the VOSP cube-analysis task.
Delayed copy of the ROCF figure provides a measure of episodic
memory; all but two of the more severe cases (BS and IB)
performed normally on this task. Forward and backward digit span
provide simple assessments of working memory capabilities; all
patients were normal on these measures. Finally, the Wisconsin
Card Sorting Test (Heaton, Grant, & Berg, 1995) provides an
assessment of executive function. Three patients (GE, BS, and EK)
were impaired relative to controls on this task; however, all three
performed above the published cutoff for impairment in this age
range (50–74, where scores exceeding 1 are considered within the
normal range). In sum, all patients performed generally well on
these cognitive measures, with reliable impairment observed in
just 2 patients on the episodic memory task and in just 1 patient in
one of three tests of visual perception.

In contrast to this generally good cognitive profile, all patients
showed moderate to severe impairments on three common tests of
semantic memory: picture naming for 64 line drawings of common
objects; 10 alternative forced-choice word-to-picture matching for
the same 64 items; and the picture version of the Pyramids and
Palm Trees Test of semantic association. As indicated in the table,
healthy controls typically perform near ceiling on these measures,
and all 8 patients were reliably impaired relative to controls on all
three semantic measures. The general neuropsychological data are
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Figure 1. Mean reaction times (left) and discrimination accuracy measured as d� (right) in general, basic, and
specific conditions of Experiment 1. Error bars indicate standard error of the mean in each condition.
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thus consistent with the view that SD represents a relatively pure
impairment of semantic memory.

Materials. The same word–photograph pairs from the previ-
ous experiment were used. Each photograph was printed on a
single sheet of A4 paper with the corresponding word printed
above it. The 144 stimuli were arranged in pseudorandom order
(ensuring that the same photograph did not appear twice within 5
successive trials) and bound. All patients viewed the stimuli in the
same pseudorandom order.

Procedure. Participants sat across the table from the experi-
menter. For each trial, they were shown the word and picture while
the experimenter read the word aloud, then he or she asked

whether the word matched the picture by saying, for instance, “See
this? Is this a dog?” Patients were encouraged to respond “yes” or
“no.” Responses were coded by the experimenter on a sheet of
paper not visible to the patient.

Results

Figure 2 shows the d� scores for discriminating targets from
distractors across specific, basic, and general conditions. The left
side shows d� scores in each condition plotted against the severity
of semantic impairment as assessed by scores on the word–picture
matching test in Table 1. The data were smoothed by averaging the

Table 1
Basic Neuropsychological Data on the 8 Patients Tested in Experiment 2

Controls Patients

M SD JM DD DV GE PF BS IB EK

Demographics
Sex M M M M F M M F
Age 67 72 65 50 67 71 57 63

General neuropsychology
MMSE/30 28.8 0.9 24 22 23 – 24 25a 23 26a

Visual perception
Rey copy/36 34.2 1.6 36 34 35 35 32 32 32 27
VOSP–dot count/10 9.9 0.3 10 10 10 10 10 10 10 9a

VOSP–cube analysis/10 9.3 1.5 9 10 10 10 10 5 10 10a

Memory
Rey delayed copy/36 18.3 5.2 17 – 13 26 9 0 4 –
Forward digit span 7.1 0.9 7 7 7 7 8 6 8 5
Backward digit span 5.4 1.4 7 7 3.5 4 6 4 5 3

Executive function
WCST/6 5.9 0.4 6 6 6 4 6 2 5 3

Semantics
Naming/64 62.3 1.6 30 37 10.5 13 10 4 5 2
Word–Picture matching/64 63.8 0.4 61 55 47 32 29 27 19 15
PPT pics/52 51.2 1.4 46 45 30.5 34 27 33a 33 39a

Note. Dashes indicate that the patient was never tested. MMSE � Mini-Mental State Examination; VOSP � Visual Object and Space Perception Battery;
WCST � Wisconsin Card Sort Task; PPT pics � Pyramids and Palm Trees Test, picture version.
aIndicates scores taken more than 1 year prior to testing on the category verification task.
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Figure 2. Left panel: Mean discrimination accuracy for semantic dementia patients in each condition plotted
against the severity of semantic impairment as measured by the Word–Picture Matching Test (WPM). Each point
represents the average of 2 patients with similar scores on the WPM test. Right panel: Mean discrimination
accuracy for 4 milder and 4 more severely impaired patients. Error bars show standard error of the means.

455OBJECT CATEGORIZATION



scores for pairs of patients with comparably severe semantic
impairments—thus each point in the plot reflects the average d�
and word–picture matching scores for 2 patients. It is apparent that
performance declined with the magnitude of the semantic impair-
ment but that the slope of this decline differed for specific, basic,
and general conditions. Whereas the milder patients showed an
advantage for basic-level classification, performance declined for
basic and specific conditions, but not for the general condition, so
that more severe patients showed a substantial advantage for
general classification. Only the 2 participants with the mildest
impairments showed numerically better performance at the basic
level than at the general level.

The right side of the figure presents the mean data for the 4
mildest and 4 more severe patients. By inspection, a small but clear
basic-level advantage in the mild group changes to a substantial
advantage for general classification in the more severe cohort. This
observation was substantiated by a repeated-measures ANOVA in
which category level was treated as a within-subjects factor and
extent of semantic impairment (mild or severe) was treated as a
between-subjects factor. The results showed significant main ef-
fects of both severity, F(1, 6) � 7.2, p � .04, �p

2 � 0.55, and
category level, F(2, 12) � 14.4, p � .001, �p

2 � 0.71, with
Bonferroni corrected post hoc contrasts, indicating that the latter
effect results from worse performance overall for the specific
relative to the general condition ( p � .01). Most interesting,
however, was the significant interaction between severity and
category level, F(2, 12) � 8.4, p � .006, �p

2 � 0.58. Planned
paired-samples t tests revealed that performance was significantly
better in the general than in the basic condition ( p � .02) for the
severe cohort but not for the milder cohort ( p � ns).

Discussion

Experiment 2 showed that the standard advantage for classifying
visual stimuli at the basic level gives way to a general-level
advantage as conceptual knowledge degrades. The pattern cannot
be explained with reference to the overall difficulty of the various
conditions because it is the typically more difficult condition
(general classification) that is better preserved in the patients and
the typically easier condition (basic-level classification) that dete-
riorates more rapidly in SD. Moreover, the two conditions that,
from the healthy control data, seem matched for difficulty—
general and specific conditions—show a dramatic difference in the
more severely impaired group, with general-level performance
near normal and performance at the specific level essentially at
chance.

These data suggest, in concert with the bulk of the literature, that
patients with SD retain fairly good knowledge of superordinate
concepts even when entry-level concepts have degraded; this sug-
gests in turn that retrieval of superordinate information does not
depend upon prior activation of entry-level concepts. There are,
however, at least two alternative explanations of the patient data
consistent with the entry-level view. First, patients might simply
be misclassifying the stimuli at the entry level, thus producing
errors at the basic level but not the superordinate level. For
instance, perhaps the patients have lost the entry level concepts
“goat,” “pig,” and so on, but retain the concept “dog”—so that they
incorrectly judge the former items to be dogs (thus producing
errors in the basic-level condition) and then conclude that they are

animals (thus producing correct responses at the superordinate
level). Second, it is possible that the entry level simply “moves up”
the hierarchy as the disease progresses—so that superordinate
category representations previously accessible only through a
spreading-activation mechanism come to be directly activated by
the visual stimulus (i.e., when the dog node degrades, the dog
stimulus directly activates the animal node in the network).

Despite these caveats, the data are sufficiently compelling to
warrant consideration of how alternative explanations of the basic-
level advantage might explain the apparent preservation of general
category knowledge in SD. In the next section, we describe an
account that derives from the parallel distributed processing theory
of conceptual knowledge (McClelland & Rogers, 2003; Rogers,
Lambon Ralph, Garrard, et al., 2004; Rogers & McClelland,
2004). We see that, under this account, basic-level advantages
arise from the same factors emphasized by the differentiation
theory—informativeness and distinctiveness—but that the PDP
theory makes counterintuitive predictions about the time course of
processing in the category-verification task. These predictions are
then tested in Part 3.

Part 2: A PDP Account of Basic-Level Effects

Several different PDP models of semantic memory have ap-
peared in the literature (Cree, McRae, & McNorgan, 1999; Devlin,
Gonnerman, Andersen, & Seidenberg, 1998; Farah & McClelland,
1991; Gotts & Plaut, 2002; Hinton, 1981, 1989; Hinton & Shallice,
1991; Humphreys, Lamote, & Lloyd-Jones, 1995; Lambon Ralph,
McClelland, Patterson, Galton, & Hodges, 2001; McRae, Sa, &
Seidenberg, 1997; Plaut, 1999, 2002; Rumelhart & Todd, 1993;
Schyns, 1991). The models differ in many of their details but
derive from a similar theoretical approach to semantic cognition
(see Rogers & McClelland, 2004). In this section, we provide a
brief overview of the theory and consider how it addresses both the
fine-to-coarse deterioration of semantic knowledge in SD as well
as basic-level phenomena. In so doing, we refer to previous work
described by Rogers, Lambon Ralph, Garrard, et al. (2004) and
Rogers and McClelland (2004), but the principles that give rise to
the phenomena of interest are general to PDP models that derive
from the basic theoretical framework, and we believe the same
effects would arise in many of the other model implementations
cited above.

The PDP Theory

Our theory is premised on the notion that knowledge about the
meanings of words and objects emerges from the interactive acti-
vation of perceptual, motor, and linguistic representations across
different modalities of reception and expression. The word rose,
when spoken, may call to mind an object with a particular shape,
color, texture, smell, and so on, and these associations are neces-
sary for apprehension of the word’s meaning. Correspondingly,
when shown a black-and-white photograph of a rose, we can call
to mind the appropriate name and other statements about it (“it’s
pretty,” “it has thorns”); its characteristic color, smell, and so on;
and when walking on a dark night, the smell of roses might
provoke a similar constellation of associations across other mo-
dalities.
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The idea that meanings emerge from such associations has a
long and storied history in cognitive science that we do not
consider further here, except to note that the basic idea has re-
ceived considerable empirical support from functional neuroimag-
ing and neuropsychological studies over the past two decades
(Barsalou, Simmons, Barbey, & Wilson, 2003; Chao, Haxby, &
Martin, 1999; H. Damasio et al., 1996; Kellenbach, Brett, &
Patterson, 2001; Pulvermueller, Harle, & Hummel, 2001; Saffran,
2000; Thompson-Schill, 2003; Warrington & Shallice, 1984). In-
deed, every theory we are aware of that addresses the neural
underpinnings of semantic knowledge depends, to a greater or
lesser extent, on this premise (though there is considerable debate
as to whether conceptual knowledge inheres solely in such asso-
ciations or whether other kinds of representations and processes
are also required).1 In common with these other views, we propose
that different kinds of sensory-motor information are coded in
separate, neuroanatomically distinct cortical regions and that se-
mantic or conceptual knowledge inheres in the learned associa-
tions among the modality-specific representations coded in these
different regions.

We further propose (consistent with the PDP approach to cog-
nition) that, within each region, different representations are in-
stantiated as different patterns of activity distributed across the
same neurons. For instance, different shapes are coded with dif-
ferent patterns of activity across the neurons in the “shape” re-
gions, different patterns of motion are coded with different patterns
of activity across the “motion” region, and so on. These distributed
representations capture modality-specific similarity structure—so
that, for instance, two objects with similar shapes but different
colors (e.g., a lightbulb and a pear) would be coded with similar
patterns in the “shape” regions and different patterns in the “color”
regions, whereas the reverse would be true for two objects with
different shapes but a similar color (e.g., a strawberry and a fire
truck).

Finally, in contrast to some theorists (e.g., A. R. Damasio, 1989)
but consistent with others (e.g., Humphreys et al., 1995), we
propose that the associations between the various different
modality-specific representations are not predominantly mediated
by separate pathways between the corresponding cortical regions
but by a shared set of amodal semantic representations. We believe
these representations to be coded in the anterior temporal cortex—
the focus of the neuropathology observed in SD. Like the
modality-specific surface representations, the semantic represen-
tations in our theory are instantiated as distributed patterns of
activity across a set of neurons, with different patterns correspond-
ing to different concepts. Whereas the surface representations
capture modality-specific similarity structure, the semantic repre-
sentations capture conceptual similarity structure. That is, items
that are “the same kind of thing” will be represented as similar,
even if they differ greatly in shape (e.g., a flamingo and a hum-
mingbird), color (e.g., a lemon and a lime) and so on; whereas
items that are “different kinds of things” will be represented with
dissimilar patterns, even if they share a similar shape (e.g., a pear
and a lightbulb), color (e.g., a strawberry and a fire truck), and so
on.

On this view, the semantic representations act as a kind of
“hub,” allowing the instantiation of a representation in one mo-
dality (e.g., shape) to provoke the instantiation of associated
words, actions, and perceptual characteristics in other modalities.

The basic idea is schematized in Figure 3. Here, the appearance of
a visual stimulus such as a line drawing first engages a represen-
tation of object shape, which then engages a semantic representa-
tion in the hub, which in turn engages representations of associated
attributes in other sensory, motor, and language regions. These can
then feed back to influence the representation coded in the hub.

This general idea—that perceptual similarity structure is coded
in more peripheral modality-specific regions, whereas conceptual
similarity structure is captured by more central semantic represen-
tations that serve to mediate cross-modal mappings—is common
to most of the various PDP models of semantic memory cited
previously. The hypothesis that the anterior temporal lobes func-
tion as a cross-modal “hub” is supported by neuroanatomical
observations (Gloor, 1997), functional neuroimaging data (H.
Damasio et al., 1996; Gauthier, Anderson, Tarr, Skudlarski, &
Gore, 1997; Gorno-Tempini, Wenman, Price, Rudge, & Cipolotti,
2001; Nakamura et al., 2001; Rogers et al., 2006; Scott, Leff, &
Wise, 2003), and computational arguments (Rogers, Lambon
Ralph, & Garrard, et al., 2004; Rogers & McClelland, 2004),
in addition to neuropsychological observations from SD (Ad-
lam, Patterson, Rogers, Salmond, & Hodges, 2006; Bozeat et
al., 2000; Bozeat, Lambon Ralph, Patterson, & Hodges, 2002;
Patterson et al., 2006; Rogers, Lambon Ralph, Hodges, & Patter-
son, 2004).

In our theory, and in contrast to most other related views, the
semantic representations do not themselves encode any explicit or
directly interpretable content—they do not consist of propositions,
mental images, semantic features, amodal lexical symbols, or the
like. The content of semantic memory is grounded in the percep-
tual, motor, and language representations that negotiate our inter-
actions with the environment, as suggested by Barsalou et al.
(2003) and others (Glenberg & Robertson, 2000; Pulvermueller et
al., 2001). Representations within the hub subserve a particular
functional role: They mediate the interactions amongst these per-
ceptual, motor, and linguistic representations—so that, for in-
stance, when a word form is activated via perceptual mechanisms,
this promotes a pattern of activation in the hub, which then feeds
back to modality-specific areas to instantiate representations of the
sensory/motor properties of the item denoted by the word. We
refer to these intermediating representations as semantic because
this functional role is critical to semantic capabilities. Because
semantically related items are represented with similar patterns of
activity in the hub, these representations provide the basis for
semantic induction and generalization. For instance, if the system
learns that a pear has seeds inside, this new information will tend
to generalize to other kinds of fruit because they are represented
with similar patterns of activity in the hub; but it will not gener-
alize to the lightbulb which, despite its similar shape, is repre-
sented with a very different pattern in the hub. Semantic similarity
relations are not captured by any individual modality in the se-
mantic network; hence, without the common intermediating rep-
resentations at the hub—if, for instance, representations in differ-
ent modalities projected directly to one another—there would be
no basis for semantic generalization and induction (see Rogers &

1 Rogers and McClelland (2004) discussed in considerable detail how
many of the criticisms of so-called associationist theories can be addressed
by the theoretical framework defined in this article.
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McClelland, 2004, chapter 9 for discussion of this point). In this
sense, our theory is also similar in spirit to other proposals em-
phasizing that the main function of semantic memory is to support
inferences about the unobserved properties of objects and events
(or objects and events referred to in speech) from partial informa-
tion (Anderson, 1991; Corter & Gluck, 1992).

If the intermediating semantic representations are the only ones
that capture conceptual similarity structure, where does such struc-
ture come from? Our theory suggests that the structure emerges
from a domain-general learning process, as the hub gradually
learns to complete appropriate mappings between surface repre-
sentations in different modalities. Specifically, the similarity struc-
ture in the hub comes to mirror the similarities apparent across all
of the different sensory, motor, and language representations to
which it is connected—so that items that have many different
kinds of properties in common (similar shapes, movements, func-
tions, colors, and so on) come to be represented as similar (Rogers
& McClelland, 2004; Rumelhart, Hinton, & Williams, 1986;
Rumelhart & Todd, 1993). These cross-modal similarities can
differ substantially from the similarities captured by any single
modality alone—for instance, although the pear and the lightbulb
have similar shapes, they differ greatly in their color, their texture,
the uses to which they are put, the way they are described in
language, the contexts in which they are typically found, and so on.
Bananas and pears, though they have different shapes and colors,
are similar in these other respects. The representations that inter-

mediate mappings across all modalities come to represent the pear
and banana as similar to one another, and as different from the
lightbulb, because they are tuned by the structure apparent across
all the different surface representations to which they are con-
nected (see Rogers, Lambon Ralph, & Garrard, et al., 2004).

The theory thus contends, as did Rosch (Rosch, 1978; Rosch et
al., 1976; Rosch, Simpson, & Miller, 1976), that the conceptual
similarity relations that govern generalization and induction are
shaped by the perceived structure of the world across all different
modalities of expression and reception. We further assume, as did
Rosch (Rosch, 1978; Rosch et al., 1976), and consistent with the
differentiation theory of basic-level effects (Murphy & Brownell,
1985), that exemplars of a basic-level category such as “dog” tend
to share many attributes across modalities and share considerably
fewer attributes with exemplars of other basic-level categories
(e.g., “bird”)—so that, for instance, different individual dogs are
all represented with quite similar patterns of activation in the hub,
whereas other kinds of animals (pigs, goats, birds and so on) are
represented with somewhat different patterns, and nonanimals are
represented with dramatically different patterns. In other words,
basic-level categories correspond to relatively tight and widely
separated—that is, distinct and informative—clusters of distrib-
uted representations in the network hub. Subordinate concepts then
correspond to smaller and less well-separated clusters within the
basic-level cluster and so have many near neighbors from different
subordinate groups—they are informative but not distinctive. Su-

Figure 3. Schematic of the theoretical framework. Each black circle represents a separate region of cortex, and
the lines indicate how different regions are connected in the cortical semantic network under the theory. Each
region outside the “hub” encodes a different kind of perceptual, motor, or linguistic representation. Within each
region, representations are instantiated as distributed patterns of activity across neuron-like processing units. The
various “surface” (i.e., sensory, motor, and language) representations communicate with one another through a
common set of distributed representations coded in the anterior temporal cortex. Functional and neuroanatomical
labeling of these regions, though meant to be suggestive, is based on that proposed by McClelland and Rogers
(2003) on the basis of functional imaging and neuropsychological studies.
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perordinate concepts correspond to more inclusive but sparser
clusters in the representation space—they are distinctive but not as
informative. This notion is schematized in Figure 4.

A PDP Account of Basic-Level Effects

In this framework, similar to the differentiation theory, basic-
level effects arise as a direct consequence of the similarity struc-
ture of the representations coded in the hub. The mechanism by
which this structure results in a basic-level advantage differs
somewhat from that proposed by the differentiation theory: It
depends upon the pattern of generalization fostered by these rep-
resentations as the network learns to name (Rogers & McClelland,
2004). To see this, consider how a network like the one in Figure 3,
with semantic representations like those schematized in Figure 4,
might behave when learning to name various animals at subordi-
nate, basic, and general levels. When taught that a certain bird is
a canary, this response will tend to generalize to items with similar
representations, namely other birds. When the network later learns
that another particular bird is called robin, and not canary, the
earlier learning must be reversed to some extent—the weights
must change to lower the activation of canary and raise the

activation of robin, and this change in turn will tend to generalize
to all the birds. That is, when items with similar representations
have different names (as in subordinate naming), similarity-based
generalization produces interference that slows name acquisition.
In contrast, when learning to call the canary a bird, the response
generalizes strongly to all the other birds, speeding learning of the
basic-level term for all of these; and because nonbirds are all
represented as distinct from the canary, the response will not tend
to generalize to these other items so that little interference is
produced. Thus, the similarity structure of the representations
produces little interference when learning basic-level names and
much more interference when learning more specific names.

Next, consider learning to call the canary an animal. In this case,
the response will again tend to generalize strongly to the other
birds, which is appropriate because all other birds are also animals.
The response will not generalize very strongly, however, to the
other animals because they are represented as quite distinct from
the canary. So, for every time the word animal is encountered
during learning, it will benefit only a small fraction of the items to
which the name applies (namely, all of the items from the same
basic category). In contrast, every time the basic-level term bird is

Figure 4. Schematic representation of the similarities among distributed semantic representations for various
animals and vehicles postulated by the theory. In the parallel distributed processing theory, semantic represen-
tations are instantiated as patterns of activity across neuron-like processing units in the anterior temporal-lobe
“hub”. Any particular representation can thus be construed as a point in a high-dimensional space. In the figure,
each point indicates the representation of a particular item (e.g., a particular individual canary), and the proximity
between points indicates the degree of similarity between the corresponding representations. Various individual
canaries are very similar to one another; birds in general are quite similar to one another and somewhat
segregated from other animals; but animals are, overall, somewhat more similar to one another than they are to
vehicles. The contours and labels indicate how names at different levels of specificity map onto this represen-
tation space. Specific names apply to items with similar representations (i.e., all the canaries) but do not apply
to close neighbors (i.e., other birds). General names apply across a broader swath of the representation space and
so encompass items with quite different representations. Basic-level terms map most closely onto clusters in the
representation space.
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used for an individual item, it generalizes strongly to most or all of
the other items for which it is an appropriate response because
these are all represented as similar. As a result, if the terms bird
and animal appear equally often in the environment, the name bird
will be learned more quickly. Similarity-based generalization thus
promotes more rapid learning of basic-level names for words of
equal frequency.

Of course, these influences will vary depending upon the exact
similarity structure of the semantic representations and the fre-
quency of the labels at different levels of specificity. The general
principles are as follows: (a) the more frequent the label, the more
quickly and strongly it will become activated, all else being equal;
and (b) these frequency effects interact with the similarity structure
of the semantic representations, so that (again, all else being equal)
names are more slowly acquired and more difficult to activate
when they apply across sets of items with very different represen-
tations, or there are items with different names that have very
similar representations. Exemplars of basic-level categories are
represented as similar to one another and as distinct from other
items, and so basic-level names get the most benefit and the least
interference from similarity-based generalization.

Accounting for the Preservation of Superordinate
Information in SD

If basic-level terms are, for the reasons described above, easier
to learn and faster to activate, why should more superordinate
information be more robust to brain damage? The answer sug-
gested by our theory (see Rogers, Lambon Ralph, & Garrard, et al.,
2004) becomes apparent by again considering the similarity struc-
ture of the semantic representations shown in Figure 4. Recall that
each point in this illustration corresponds to a pattern of activity
across neurons in the anterior temporal cortex, with proximal
points corresponding to similar patterns of activity. When the
anterior temporal cortex deteriorates in SD, the pattern that arises
there in response to some stimulus is necessarily distorted because
the disease has destroyed some of the neurons that coded the
healthy pattern. Small distortions to an item’s representation will
disturb the ability to activate, elsewhere in the semantic network,
very specific properties, whereas the ability to activate more gen-
eral properties remains somewhat more intact.

To see this, consider what must happen in the healthy network
when it names birds at the subordinate level. To correctly activate
the name canary in verbal-output parts of the network, the hub
must instantiate the canary pattern almost exactly. Because the
name does not apply to all of the other birds, and because these all
have quite similar representations, then very small deviations from
the canary pattern will lead the network to stop producing the
name canary as output. In contrast, a name like bird applies to the
canary and to all the other birds—so that the network need not get
the pattern for canary exactly right in order to produce this name.
If, as a consequence of disease, the pattern for canary gets dis-
torted so that it becomes more like the pattern for crow or robin,
the network will still be able to produce the name bird, because
this response can be generated from any bird-like pattern. So,
basic-level naming can tolerate small distortions to the intermedi-
ating representations; and by the same reasoning, naming at still
more general levels can tolerate still greater distortions to the
representations. For instance, the name animal applies not just to

the birds but to the various land animals and fish as well—so even
if the representation of canary is distorted so much that it falls
closer to the representation of dog than to the various bird repre-
sentations, the network will still be able to correctly produce the
response animal.

In summary, under the PDP theory, basic-level advantages arise
because names tend to generalize across items with similar repre-
sentations, so that names that apply consistently across a set of
tightly clustered and well-separated representations are easiest to
learn; but the robustness of naming at different levels of specificity
also depends upon the breadth of the representations spanned by
the name once it has been acquired. In a feed-forward computer
model based on the PDP theory, Rogers and McClelland (2004)
showed that these influences combine to produce a basic-level
advantage for naming and category verification but that naming at
the basic level declines more rapidly as internal representations are
increasingly distorted so that the basic- over general-level advan-
tage is eventually reversed, as we have shown it to be in SD. In a
fully recurrent model similar to that shown in Figure 3, Rogers,
Lambon Ralph, & Garrard, et al. (2004) showed that such effects
can explain a broad range of observations in SD.

Part 3: A Counterintuitive Prediction

The PDP theory makes a prediction about the time course of
activation for names at different levels of specificity that directly
contradicts the entry-level theory and that initially seems counter-
intuitive from the perspective of the differentiation theory. The
prediction of the entry-level theory is straightforward. The theory
states that people are fastest to name and verify category mem-
bership at the basic level (for typical items) because basic category
representations are the first to be activated by a visual stimu-
lus—so participants should always be most accurate to verify
category membership at the basic level, no matter how quickly
they are required to respond. Similarly, the aim of the differenti-
ation theory is to explain why people are often fastest to categorize
at the basic level, and so there is no reason to expect, under this
theory, that the basic-level advantage should be qualitatively al-
tered under speeded-response conditions. In contrast, the PDP
theory predicts that, if participants are pressured to respond more
quickly than they ordinarily would, the basic-level advantage for
category verification should give way to a basic-level disadvantage
relative to more superordinate categorization.

To see this, consider what happens in a model like that shown
in Figure 3 when it is presented with a visual stimulus such as a
picture of a canary. Prior to the onset of the stimulus, the hub
representation is presumably in some neutral state. When the
stimulus appears, visual input begins to change this state, moving
it toward the correct representation (i.e., the pattern corresponding
to canary). The key observation is that, because the canary rep-
resentation is nested within the broader region of space to which
the name bird applies, the network will begin to pass through the
“bird” region before it reaches the canary representation; and as it
enters the “bird” region, it will begin to activate the name bird in
the output. Put differently, before the model’s internal representa-
tion has established the particular pattern that represents the canary
(from which it can activate all of the canary’s properties in other
parts of the network), it passes through a state that is generally
similar to all of the individual birds that it knows about. Because
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the name bird is true of all these items, the network will begin to
activate the “bird” label from this incompletely-specified repre-
sentation, before it has tuned the representation to the precise
pattern corresponding to canary. The same argument applies to the
name animal: Because the region to which the name bird applies
is completely encompassed by the broader region to which animal
applies, the model’s internal state will begin to pass through the
“animal” region first. This in turn means that, counterintuitively,
the name animal ought to begin to activate before the name bird.

Why then is there a basic-level advantage for naming or cate-
gory verification at all? The reason is that, although animal begins
to activate sooner than bird, the name bird gets fully activated
much more quickly, due to the effects of similarity-based gener-
alization discussed previously. Put differently, superordinate
names begin to activate first because they apply broadly across a
wide range of semantically related items; but their time course of
full activation (where full means sufficient to provide a confident
response) will be slower for the same reason—the broadly spaced
representations to which they apply do not foster much generali-
zation one to another so the name is slower to activate. Because
basic names apply across a narrower region of the space, their
activation starts later but accelerates more rapidly.

This idea is schematized in Figure 5. The left panel shows the
movement of the hub’s internal state, beginning at a neutral point
and then moving successively through regions to which the various
names apply—first “animal,” then “bird,” and finally “canary.”
The right panel shows the corresponding predicted time course of
activation for these names. Assuming that the time to verify
category membership ordinarily (i.e., without deadline pressure)
depends upon one of the name outputs exceeding a threshold, then
if the threshold for responding is set relatively high (as shown by
the dashed horizontal line in the Figure 5), basic-level responses
will be the first to meet it, producing a basic-level advantage for
naming and category verification. What happens when the system
is forced to respond at increasingly shorter latencies before any
name has exceeded threshold? Under the assumption that the
system produces a “best guess” proportional to the activation of
the name unit, the basic- over general-level advantage should first
vanish and then be reversed—so that, at very fast latencies, people
should be more accurate for superordinate relative to basic cate-
gorization.

There are some hints in the literature to support this prediction.
For instance, Van Rullen and Thorpe (2001) elicited remarkably
fast (200–400 ms) and accurate responses in a task requiring

Figure 5. Schematic representation showing the basis for the parallel distributed processing theory’s prediction
about the time course of activation for names at different levels of specificity. When a visual stimulus appears,
the model’s semantic representation state begins to move from some neutral point toward the appropriate
representation (e.g., a particular canary), as illustrated in the left panel. The right panel shows the predicted
activation of different names over this time span. To reach the end state, the system’s internal representation first
begins to pass through the region of the space to which the general name applies so that the general name begins
to activate soonest; but because general-name learning does not benefit greatly from similarity-based general-
ization, the label is slow to activate. Some time later, the representation reaches the area in which the basic name
applies, and the corresponding name begins to activate. Because basic-level clusters promote similarity-based
generalization and minimize interference, the name activates more rapidly. The specific name does not begin to
activate until the internal state is very close to the correct representation, so this is the last name to activate.
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participants to detect whether a visually complex scene contained
a means of transport (in one condition) or an animal (in another).
The stimuli were presented for only 20 ms (though without back-
ward masking), and participants showed better-than-chance re-
sponding as early as 200–250 ms—suggesting that superordinate-
level information is available extremely rapidly in this kind of
detection paradigm. In a similar vein, Large, Kiss, and McMullen
(2004) used an oddball-detection paradigm to investigate the speed
of visual classification at different levels of specificity. Partici-
pants monitored a stream of visual images for a particular target,
with targets occurring rarely relative to distractors. “Oddball”
targets have been associated with a negative event-related potential
(ERP) deflection at an early poststimulus latency; hence, the
authors were able to investigate the differentiation of targets from
distractors in both the ERP signal and in behavioral data. The
interesting finding was that correct responses to targets were faster
in conditions requiring a superordinate discrimination (e.g., detect-
ing animals, including 30 beagles and 20 other animals, from
among a stream of manmade objects) than in conditions requiring
a basic-level discrimination (e.g., detecting dogs, including the
same 30 beagles and 20 other dogs from among a stream of
animals). Consistent with this behavioral finding, analysis of the
ERP showed an early peak discriminating superordinate responses
from basic and subordinate responses, with subordinate responses
differentiating from basic responses later in the wave form.

Such findings are suggestive because they appear to indicate
that information sufficient to support categorization at the super-
ordinate level is available earlier in processing than is the infor-
mation required to differentiate items at the basic level, as pre-
dicted by the PDP theory. They are not conclusive, however,
because the detection tasks that elicit these effects differ substan-
tially from the tasks that reliably elicit basic-level advantages (e.g.,
naming, category verification, property verification, and so on). It
is therefore not clear whether the surprising pattern of results arises
because basic-level information is not, contrary to the received
view, available earliest in processing, even in tasks that reliably
elicit basic-level advantages, or whether the rapid visual detection
tasks used in this research exert sufficiently different demands on
visual, semantic, and executive processes that the usual basic-level
advantage does not obtain.

To the contrary, the PDP theory predicts that, under speeded
response conditions, a superordinate-over-basic advantage ought
to be observed in the very same task and with the very same
stimuli that, under nonspeeded conditions, elicit a basic-level
advantage. This is the prediction tested in Experiment 3. The same
participants from Experiment 1 completed the same category-
verification task, with the same materials. The only difference was
that the participants were required to make their responses in time
with a deadline so that we could tightly control the amount of time
they had to process the visual stimulus. We then investigated the
impact of different response deadlines on accuracy and speed of
superordinate-, basic-, and specific-level categorization.

Method

Participants and materials. The same participants from Ex-
periment 1 participated in this experiment in the same session. All
participants completed Experiment 3 after Experiment 1. The same
stimuli from Experiment 1 were used in Experiment 3.

Procedure. On each trial, as before, participants first viewed a
subordinate, basic, or general category name, followed by a match-
ing or nonmatching color photograph and were asked to decide
whether the photograph matched the name. In contrast to the
previous experiment, participants were required to time their re-
sponses very precisely. To impose the response deadline, we used
a tempo-matching procedure adapted from Kello (2004). After the
presentation of the category name, participants heard four
regularly-spaced beeps, and they were instructed to time their
response as closely as possible with the fourth beep (i.e., beep,
beep, beep, response) so that the fourth beep corresponds to a
response deadline. In contrast to the Kello (2004) paradigm, the
timing of the beeps was identical in every trial in our experiment
(1 s from onset to onset), so participants were able to get the
“rhythm” of responding. We then varied the onset of the picture
with respect to the deadline. The experimental design is illustrated
in Figure 6. Because the timing of the beeps was always the same,
participants had no cue as to what the latency would be between
the appearance of the picture and the response deadline from trial
to trial.

All stimuli and conditions from Experiment 1 were repeated
three times at three different deadlines—slow, medium, and
fast—so that response deadline is a within-subjects factor. The
slowest deadline was set separately for each participant to match
his or her mean RT in the basic-level condition of Experiment 1.
That is, if Participant A had a mean RT of 970 ms for correct
basic-level trials in Experiment 1, then in the slow deadline con-
dition for that participant, the picture always appeared 970 ms
before the deadline. The medium deadline was set separately for
each participant to be 200 ms shorter than the slow condition, and
the fast deadline was set to be 200 ms shorter than the medium
condition. So, the participant with a slow (i.e., “normal”) deadline
of 970 ms would have 770 ms to process the picture in medium
trials and 570 ms in fast trials. Trials were not blocked and were
presented in a different random order for every participant so that
the deadline was unpredictable from trial to trial. Participants
received positive feedback if they responded within 100 ms of the
deadline and negative feedback otherwise.

Figure 6. Schematic of the trial design. At the beginning of each trial the
word appears, followed by four regularly spaced beeps. The response
deadline is timed with the fourth beep. The onset of the picture with respect
to the last beep is varied across slow, medium, and fast trials; t � time.
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Results

Analysis 1. Responses were considered to have met the re-
sponse criteria if they fell within 100 ms of the deadline because
100 ms marks the halfway point between deadlines in the slow,
medium, and fast conditions. Note that, although this cut-off point
seems fairly strict, the tempo-matching procedure allows partici-
pants to anticipate the upcoming deadline—so that it is consider-
ably easier to meet the criterion when using this method compared
with other methods (such as when using a tone to signal the
deadline). In the first analysis, responses that did not meet the
deadline were discarded (an average of 21% of trials across par-
ticipants). Accuracy was then tabulated across the remaining trials
for decisions at each deadline for each specificity condition (spe-
cific, basic, and general). As previously noted, we used d� as a
measure of accuracy for discriminating between targets and dis-
tractors.

The top left panel in Figure 7 shows the mean RT for correct
trials in specific, basic, and general conditions, with no response
deadline (i.e., Experiment 1) and for the three deadline conditions

in Experiment 3. Participants clearly responded much more
quickly for all conditions in Experiment 3 than for those in
Experiment 1, a finding that may partially reflect familiarity with
the stimuli in addition to the imposition of the response deadline.
It is important to note, though, that the tempo-matching procedure
worked: Participants had the slowest latencies in the slow condi-
tion, somewhat faster latencies in the medium condition, and the
fastest latencies in the fast condition. A repeated-measures
ANOVA predicting RT from response deadline (fast, medium,
slow) and category level (general, basic, specific) showed a main
effect of deadline, F(2, 50) � 13.1, p � .001, �p

2 � 0.83, with
Bonferroni corrected post hoc contrasts indicating that participants
were slower in the slow condition compared with the medium
condition ( p � .001) and slower in the medium condition com-
pared with the fast condition ( p � .001). There was also a main
effect of category level, F(2, 50) � 8.5, p � .001, �p

2 � 0.25;
Bonferroni corrected post hoc contrasts showed that this effect was
driven by faster RTs to specific relative to general categorization
( p � .004), but that there was no significant difference in RT
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Figure 7. Top row: Reaction times (left) and discrimination accuracy (right) for categorization at different
levels of specificity in Experiment 1 and in the three deadline conditions of Experiment 3, considering all trials
that met deadline. Bottom row: The same data, discarding from all conditions any stimulus that failed to meet
deadline in any condition. Exp1 � no deadline data from Experiment 1.
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between basic classification and either specific or general classi-
fication. Most important, there was no significant interaction be-
tween deadline and category level, F(4, 100) � 0.25, p � ns)—
indicating that the RTs at different levels of categorization, relative
to one another, did not change across different deadlines.

The top right panel of Figure 7 shows discrimination accuracy
(d�) when there was no response deadline (Experiment 1) and at
the three response deadlines in Experiment 3. For basic and spe-
cific conditions, accuracy declined as participants were offered
less time to process the stimulus, but accuracy for general or
superordinate classification was relatively constant—so that, at the
fastest deadline, performance was better for the general than for
the basic condition. A repeated-measures ANOVA predicting ac-
curacy from deadline condition (slow, medium, fast, and the no-
deadline condition from Experiment 1) showed (a) a main effect of
deadline, with accuracy worse overall for faster than slower dead-
lines, F(3, 78) � 13.1, p � .001, �p

2 � 0.34; but (b) no main effect
of specificity, F(2, 52) � 1.8, p � ns; and (c) an interaction
between deadline and specificity, F(6, 156) � 5.3, p � .001, �p

2 �
0.17. A planned-comparisons paired-samples t test revealed that, at
the fastest deadline, accuracy was significantly greater for general
than for basic categorization ( p � .001).

Note that, although the overall faster RTs in the tempo-matching
task may partially reflect repetition priming or other influences of
stimulus familiarity, such effects cannot explain the reversal of the
basic-level over general-level advantage at the shortest response
deadline. Because the deadline conditions (short, medium, or long)
were ordered randomly, there is no reason to expect that items in
the short condition were any more or less primed, on average, than
items in the medium and long conditions. Furthermore, it is not
clear how or why repetition priming would benefit general cate-
gorization any more than basic or specific categorization.

Analysis 2. Though the results of the first analysis match the
predictions of the PDP theory, they may not be conclusive because
of the decision to discard responses that did not meet the deadline
in each condition. In the stimuli we used, it is possible that some
items produce a reliable basic-level advantage, whereas others do
not, and that RTs for such items rarely met the fastest deadline, so
that most such trials were discarded in the fast condition, but not
in the other conditions. In this case, the apparent superiority of
general over basic-level classification might arise simply because
many of the stimuli that carried the basic-level advantage in
Experiment 1 were thrown out. To investigate this possibility, we
conducted a second analysis of the data. For each participant, we
discarded from all deadline conditions any stimulus item that
failed to meet the deadline in any condition. For instance, if
Participant A missed the deadline for the robin in the fast condi-
tion, the robin was removed from her data for all four conditions
(i.e., the three deadline conditions of Experiment 3 and the no-
deadline data from Experiment 1). No other stimuli were dis-
carded. This ensured that, for each participant, exactly the same
stimuli entered the analysis in all deadline conditions—although
there were considerably fewer data points considered for each par-
ticipant. Specifically, 53% of trials were discarded for each par-
ticipant. We then investigated accuracy exactly as in Analysis 1.

The bottom two panels of Figure 7 show that Analysis 2 yielded
the same pattern as Analysis 1: A basic-level advantage in the
no-deadline conditions from Experiment 1 gave way to a general-
over-basic advantage at the fastest deadline. A repeated-measures

ANOVA again showed a significant main effect of deadline indi-
cating that on average accuracy declined with shorter deadlines,
F(3, 75) � 3.7, p � .02, �p

2 � 0.13. There was also a main effect
of category level in this analysis, F(2, 50) � 3.3, p � .05, �p

2 �
0.12; Bonferroni corrected post hoc contrasts suggested that this
effect was driven by somewhat better performance in general
relative to specific categorization across deadline conditions ( p �
.08, corrected). Most important, the interaction between deadline
and category level was significant, F(6, 150) � 3.5, p � .004,
�p

2 � 0.12. Planned-comparisons t tests showed that, in the free-
response data from Experiment 1, the basic-level over general-
level advantage remained significant for these trials ( p � .008) but
that the effect reversed to give a significant advantage to general
over basic-level classification at the fastest deadline ( p � .02).
Because exactly the same items appear in all deadline conditions
for each participant in this analysis, this reversal cannot reflect the
removal of items that “carry” the basic-level effect. The effect is
particularly striking considering the reduction in power resulting
from the pruning of half of the trials.

General Discussion

We began by noting a seeming contradiction apparent when
studies of conceptual knowledge in healthy and neuropsycholog-
ical populations are considered together: Whereas healthy individ-
uals are faster and more accurate to categorize most stimuli at the
basic level, patients with semantic dementia show better categori-
zation at more general levels. Experiments 1 and 2 illustrated the
contradiction: The same stimuli that produce a basic-level advan-
tage for category verification in healthy older adults and patients at
the mildest stage of SD give rise to a substantial superordinate-
over-basic advantage in more moderate or severe SD patients.
These findings seem especially puzzling from the perspective of
“entry-level” theories of basic-level effects, which propose that
basic-level category representations constitute the entry point into
a semantic processing hierarchy so that access to more general
information depends upon prior activation of more specific repre-
sentations.

To resolve the apparent contradiction, we suggest an alternative
explanation of basic-level effects, which builds upon the differen-
tiation theory advocated by Murphy (Murphy, 2002; Murphy &
Brownell, 1985). Like the differentiation theory, our theory sug-
gests that basic-level effects arise, not because basic-level catego-
ries are privileged in processing, but because the exemplars of such
categories are quite similar to one another and quite distinct from
the exemplars of other categories. The particular mechanism by
which such structural properties produce basic-level effects are,
however, somewhat different in the two theories.

Specifically, the PDP theory suggests that basic-level effects
arise as a consequence of similarity-based generalization in a
semantic system, wherein amodal conceptual representations serve
to mediate learned associations among various perceptual, motor,
and linguistic representations. Instances of basic-level categories
are represented as similar to one another and distinct from other
items in this cross-modal “hub,” precisely because they share
many properties with one another and are somewhat distinct from
other items. Basic-level effects arise as a direct consequence of this
structure: Because items from the same basic category are repre-
sented as similar to one another and distinct from other items,
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learning generalizes strongly within such categories but only
weakly between them. This pattern of generalization promotes
rapid and strong learning of basic-level names—when learning
that a canary is a kind of bird, for instance, the name bird will tend
to generalize strongly to items with similar representations (i.e.,
other birds) but not to items with distal representations (e.g., other
kinds of animals). More specific names, in contrast, suffer from
similarity-based interference, whereas more general names get less
benefit from similarity-based generalization.

Rogers and McClelland (2004) demonstrated that these influ-
ences can give rise to basic-level advantages in naming and cate-
gory verification in a simple model implementation of the theory.
Though not the focus of this article, it is perhaps worth noting that
the authors also showed how the PDP theory can account for a
range of other basic-level phenomena, including the primacy of the
basic level in lexical acquisition (Mervis, 1987a), “child-basic”
category phenomena (Mervis, 1987b), the influence of typicality
on basic-level effects (Jolicoeur et al., 1984; Murphy & Brownell,
1985), and how the basic-level advantage changes with expertise
(Johnson & Mervis, 1997; Tanaka & Taylor, 1991). As in the
current work, the accounts of these phenomena offered by the PDP
theory are similar in spirit to those offered by the differentiation
theory, as instantiated within a PDP framework.

The couching of a differentiation-like theory within a PDP
framework allows us to see why facilitation of basic-level naming
in a healthy system is no guarantee of robustness in the face of
semantic impairment. Because basic-level names apply across a
comparatively narrow span of concepts, whereas more general
names apply across a much broader span, relatively small distor-
tions of semantic representations will compromise basic naming or
categorization but will have less impact on these same tasks at a
more general level.

This understanding of impaired categorization in SD supports a
prediction about speeded categorization in healthy individuals.
Individuals responding under strict time pressure are somewhat
like patients with SD, in that they must generate a decision about
category membership from a poorly specified internal semantic
representation that does not correspond to the learned representa-
tion of a specific known item. In the case of SD, the correct
internal representation is poorly specified because the cortical
region that codes the representation has degraded with disease—
effectively distorting the intermediating representations. In the
case of speeded responding, the correct representation is poorly
specified because the system has not had sufficient time to settle to
the correct state. In both cases, some information can still be
recovered—namely, properties held in common by a broad range
of semantically related items. Because such properties are acti-
vated, at least weakly, whenever the system finds itself “in the
right ballpark,” then they can be recovered even though the system
is unable to find, or has not yet found, the right learned represen-
tation. Thus, the PDP theory predicted that individuals pressed to
respond very rapidly should show a pattern of performance similar
to SD—more accurate responding for general-level categorization
than for basic-level categorization—in the very same task and for
the very same stimuli that elicit a basic-level advantage in non-
speeded responding. This prediction, supported by the results of
Experiment 3, directly contradicts the entry-level theory of basic-
level effects, and it illustrates how a differentiation-like explana-

tion of basic-level effects is compatible with the fine-to-coarse
dissolution of conceptual knowledge observed in SD.

Implications for Spreading-Activation Theories of
Semantic Cognition

In some respects, basic-level phenomena and spreading-
activation models of semantic knowledge make strange bedfel-
lows. Spreading-activation theories seem intuitive when they are
applied to purely propositional knowledge—that is, when the
nodes in the network are understood as corresponding to individual
words, and the links to individual predicates, so that the entire
system of knowledge may be accurately characterized as a system
of propositions. Under such a scheme, there are few questions
about which concepts—which nodes and links—should inhabit the
network. Very simply, each node and link correspond to a word in
the language so that the contents of the network are determined by
the lexicon, and the structure of the network represents beliefs that
can be explicitly stated by propositions (e.g., “All birds have
feathers”). And, such a representational scheme seems most plau-
sible when considering experiments of the kind conducted by
Collins and Quillian (1969), where participants must make judg-
ments about the truth of written propositions.

The simple appeal of this approach gets complicated when the
stimuli to be comprehended are perceptual representations of ob-
jects rather than words because it is less clear which node in the
network should be activated by a given stimulus. A particular robin
belongs equally to the classes “robin,” “bird,” “animal,” and “liv-
ing thing,” so which of these nodes should a visual depiction of the
robin activate? Any answer to this question involves postulating
some additional mechanism, outside of the processing hierarchy
itself, that constrains the appropriateness of assigning a stimulus to
the various nodes in the network and indeed specifies how the
assignment itself is carried out. A common assumption is that
activation of an initial node is accomplished by a perceptual
categorization mechanism, separate from the semantic network
itself and providing the means for visual stimuli to access the
propositional information stored there. Basic-level or entry-level
phenomena are thought to provide evidence supporting this dual-
mechanism perspective: By this account, rapid retrieval of basic or
entry-level information reflects the operation of the initial catego-
rization mechanism, whereas the slower retrieval of information at
other levels of specificity (especially more general levels) reflects
the operation of the semantic retrieval process (Jolicoeur et al.,
1984).

This conception of the relationship between perceptual and
semantic processes has shaped theories of both visual object rec-
ognition and semantics. In many theories, the “goal” of the rec-
ognition process is understood to be the activation of an entry-level
category representation (Biederman & Gerhardstein, 1993; De-
Caro & Reeves, 2002; Humphreys et al., 1995; Kurbat, 1994;
Murray, 1998). Little consideration is given to the retrieval of
more general category information, presumably because this is
assumed to be “semantic” and therefore retrieved through inde-
pendent mechanisms once the stimulus has been categorized (see,
e.g., the collection of articles in Tarr & Bulthoff, 1998).

The current results challenge the view that the end product of
the visual recognition system is the activation of an entry-level
category representation: They show that classification at more

465OBJECT CATEGORIZATION



general levels is achieved earlier in processing in healthy individ-
uals. At the very least, this finding reopens the question of which
category representations are activated first by visual recognition
processes. More substantively, we believe that the question itself
may be misguided, arising as it does from the notion that mecha-
nisms of perceptual recognition/categorization and semantic pro-
cessing are separate and independent. The PDP theory is appealing
in part because it does away with the discrete category represen-
tations and the propositional links characteristic of spreading-
activation theories and, in so doing, renders moot the question of
which category nodes are directly activated by perception. Instead,
perceptual and semantic processes are viewed as continually in-
teracting: perceptual processes dynamically construct distributed
patterns of activity across modality-specific regions of cortex;
these then interact with associated patterns in other modalities, via
distributed representations in the anterior temporal-lobe hub. The
time course with which information at different levels of specific-
ity becomes available depends on (a) the similarity structure of the
distributed patterns in the hub, (b) the consistency with which the
properties to be retrieved are common to items with similar rep-
resentations, and (c) the frequency with which the item-property
correspondence has been observed in previous learning episodes.
Basic-level effects, then, do not indicate the operation of two
separate mechanisms, but arise from the influence of these factors
operating in a more homogeneous and interactive system.

Relationship to Differentiation Theory

Throughout this article, we have noted similarities between the
PDP theory and the differentiation theory of basic-level effects.
The two accounts are similar in many critical respects: both
eschew the notion that basic-level categories are “privileged” in
processing; both suggest that semantic information at all levels of
specificity is probed, in some sense, in parallel; and both place the
root cause of basic-level advantages in the attribute structure of the
environment. We therefore view our theory as capturing the spirit
and aims of the differentiation theory.

With that said, we believe that the PDP theory extends differ-
entiation theory in two important respects, both of which derive
from differences in the putative nature of semantic representations
under the two theories. Under the differentiation theory as we
understand it, the semantic system is construed as containing a vast
set of discrete prototype-like category representations, with sepa-
rate representations for categories at different levels of specificity.
In contrast to spreading-activation theories, these representations
are not organized within a processing hierarchy but may be probed
in parallel by a given stimulus. The rapidity with which a given
representation is activated depends partly on the extent of featural
overlap with the probe and partly upon competition amongst the
representations themselves. It is these dynamics that promote the
rapid activation of basic-level representations, as discussed in the
introduction.

Feature-based prototype theories, however, raise difficult ques-
tions about the hierarchical organization of concepts. If prototypes
at different levels of specificity are assumed not to be linked to one
another in some kind of processing hierarchy—for instance, if
representations of robin, bird, and animal constitute separate and
unrelated prototypes—then it is difficult to understand phenomena
that seem to require hierarchical organization. For instance, to

determine whether a particular fruit is a lime or a lemon, one must
take account of its color; but color is irrelevant when deciding
whether a certain vehicle is a car or a boat. Some form of
hierarchical organization seems essential to explain such domain-
specific attribute weighting: One must take into account whether a
given item is a fruit or a vehicle before one can determine which
properties are relevant to categorizing it more specifically. But the
linkage of structured category prototypes within a taxonomic pro-
cessing hierarchy makes it unclear when retrieval of semantic
information will be governed by similarity to the prototype and
when it will be governed by the spread of activation through the
hierarchy. At least, we are unaware of any model that has success-
fully combined structured prototypes (at all levels of specificity)
with a processing hierarchy. Such challenges to feature-based
theories of semantic representation were noted in seminal work by
Murphy and Medin (1985) and have spurred a productive program
of research designed to investigate how existing knowledge con-
strains concept formation (Lin & Murphy, 1997; Murphy &
Kaplan, 2000; Murphy & Allopenna, 1994).

In the PDP theory, semantic representations do not correspond
to summary descriptions of discrete categories at different levels of
specificity but instead are instantiated as patterns of activity across
a common set of processing units. Hierarchical relationships are
not explicitly represented but are implicit in the similarity relations
among distributed representations (as schematized in Figure 4). It
turns out that the latent encoding of hierarchical relationships
within distributed representations allows for apparent domain-
specific attribute weighting. A full explanation of such effects is
beyond the scope of this article but was provided by Rogers and
McClelland (2004; see chapter 6). Moreover, because semantic
representations are not cast as discrete entities but as patterns of
activation, with different representations instantiated across the
very same processing units, other questions that are critical to
prototype theories—for instance, questions about which categories
are represented at which levels, which information is coded with
which representations, how these representations are connected in
the processing hierarchy, and how similarity-based processes in-
teract with the spreading activation mechanism—are rendered
moot in the PDP theory. The first advantage of instantiating the
differentiation account within a PDP framework, then, is that it
sidesteps difficult challenges faced by feature-based prototype
theories.

The second way in which the PDP theory extends the differen-
tiation theory is that it makes specific claims about the neural
network that supports semantic abilities in the brain. That is, the
processing units that mediate the interactions among perceptual,
motor, and linguistic representations in our theory are understood
as representing populations of neurons in the anterior temporal
cortex; the distributed representations that arise across these units
are understood to correspond to actual patterns of neural activity
across said neurons; the patterns of connections between represen-
tations in our theory are understood to correspond to neuroana-
tomical pathways in the brain (see Rogers, Lambon Ralph, &
Garrard, et al., 2004); and so on. These correspondences, though
clearly coarse abstractions at best of the real neural system, nev-
ertheless provide a useful framework for understanding why an-
terior temporal-lobe pathology should produce the particular pat-
tern of disruption to semantic abilities observed in SD. This
understanding has allowed us to make new predictions about
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patterns of functional activation in healthy individuals (Hauk et al.,
2006; Rogers, Hocking, Mechelli, Patterson, & Price, 2005; Rog-
ers, Hocking, et al., in press), about patterns of impairment in SD
on other kinds of tests (Adlam et al., 2006; Patterson et al., 2006),
and in other neuropsychological syndromes (Lambon Ralph,
Lowe, & Rogers, in press). Thus the PDP framework links the
cognitive-level explanation of basic-level advantages offered by
the differentiation theory to a neuroanatomical account that makes
contact with neuropsychological and neuroimaging data.

Other Accounts

Recent work by Collin and McMullen (2005) and others
(Thorpe, Gegenfurtner, Fabre-Thorpe, & Bulthoff, 2001) suggests
that, for some natural categories, information about superordinate
category membership can be discerned from low spatial-frequency
visual information, whereas information about more specific cat-
egory membership may depend to a greater extent upon high
spatial-frequency information. One can imagine an explanation of
the current results on the basis of these observations. Perhaps low
spatial-frequency information is available earlier than is high
spatial-frequency information but is, for some reason, insufficient
to support a confident decision in free-response categorization
tasks. Under this view, the general over basic pattern observed in
the fast condition of Experiment 3 is supported by rapidly avail-
able low spatial-frequency information, and the observed pattern
of results reflects performance characteristics of the visual system
rather than of the semantic system. Such an explanation might also
explain why ERP signals appear to differentiate superordinate
categories earlier than basic-level categories, as reported by Large
et al. (2004). Variations on Experiment 3 in the current work may
be useful for assessing this hypothesis—one could, for instance,
conduct the same experiment by using specific object names rather
than pictures or by using items for which low spatial-frequency
information is not sufficient to discern superordinate category
membership. If the general over basic pattern depends upon the
rapid availability of low spatial-frequency visual information, then
it should disappear under either of these manipulations.
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