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As the articles in this issue attest, U-shaped curves in development have stimulated a
wide spectrum of research across disparate task domains and age groups and have
provoked a variety of ideas about their origins and theoretical significance. In our
view, the ubiquity of the general pattern suggests that U-shaped curves can arise from
multiple factors, and that the various viewpoints represented herein may be useful for
explaining some aspects of developmental change. In this spirit, we offer an addi-
tional way of thinking about such phenomena. Specifically, we suggest that
U-shaped curves can arise within a domain-general learning mechanism as it slowly
masters a domain characterized by statistical regularities and exceptions. This idea
differs from those considered thus far, and may encompass many of the phenomena
addressed by other views, three of which we outline briefly here.
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U-SHAPED CURVES INDICATE A TRANSITION FROM
“ASSOCIATIVE” TO “RULE-BASED” BEHAVIOR

Early in language acquisition, young children often master unusual but very fre-
quent constructions (e.g., past-tense forms such as went and fell), only to reverse
this accomplishment later, producing regularized but incorrect forms (such as
goed and falled; Ervin, 1964). Such phenomena are cited in the challenge to
so-called “associative learning” theories of language acquisition (Pinker 1984)
for two reasons: (a) it has been thought that no associative mechanism could
lead a child who has correctly learned a frequently-occurring construction to
stop using it, and (b) children produce incorrect novel forms (e.g., goed) that do
not occur in normal speech and hence cannot have been learned directly. Al-
though such findings were addressed by the model of Rumelhart and
McClelland (1986), Marcus et al. (1992; see also Pinker, 1991) contested fea-
tures of Rumelhart and McClelland’s simulation, and argued for the view that
these phenomena mark a qualitative developmental shift in the mechanisms un-
derpinning language production—away from an “associative” system that pro-
duces constructions it has encountered in the past toward a symbolic or
“rule-based” system that applies abstract rules productively.

U-SHAPED CURVES REFLECT DIFFERENT
CONSTRAINTS ON LEARNING AT DIFFERENT AGES

A second possibility forwarded by Cohen and colleagues (Cohen, 1998; Madole
& Cohen, 1995) is that there exist different constraints on learning at different
ages that result from a variety of factors including limited information process-
ing abilities and experience with real-world patterns of covariation. Cashon and
Cohen (this issue), for example, show elegantly that infants’ ability to perceive
faces in terms of independent features or relations among features depends on
their information processing ability. U- or N-shaped curves emerge, on this view,
when infants are unable to process a more complex higher-order level of infor-
mation and instead drop down to a simpler level. Alternatively, constraints on
new learning may emerge as a consequence of prior learning. For instance,
Rakison (2003) found that infants at 14 months will learn feature-motion rela-
tions that are uncommon in the real-world, such as when a recipient of an action
possesses dynamic features, but infants at 16 months will learn only those rela-
tions that fit the typical pattern in the real-world (i.e., when an agent possesses
dynamic features; Madole & Cohen, 1995; Namy, Campbell, & Tomasello, this
issue).
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U-SHAPED CURVES ARISE DYNAMICALLY,
WHEN SYSTEMS DEVELOPING IN PARALLEL

CHANGE AT DIFFERENT RATES

A third perspective has emerged from studies designed to illuminate how nonlinear
changes can arise in dynamic systems. A good example of this approach is
Thelen’s elegant work on the infant step-reflex (Thelen & Fisher, 1982; Thelen,
Fisher, & Ridley-Johnson, 1984). This and recent related research is outlined su-
perbly by Gershkoff-Stowe and Thelen (this issue). As they indicate, U-shaped
patterns can arise when a behavior is supported by multiple different systems de-
veloping in parallel, even though none of the individual systems itself exhibits a
U-shaped change.

A FOURTH POSSIBILITY: SENSITIVITY
TO COVARIANCE STRUCTURE

AT DIFFERENT GRANULARITIES

We suggest that there exists a further possibility, distinct from those reviewed
above, that offers a somewhat different perspective on the phenomena encom-
passed by each. Specifically, we suggest that the learning mechanisms that support
knowledge acquisition in many domains are strongly sensitive to patterns of coher-
ent covariation in the environment; that is, to the tendency for groups of features or
attributes to occur consistently together in experience. The influence of coherent
covariation on learning and representation has been investigated in detail in the do-
main of conceptual development (Rogers & McClelland, in press). Here we briefly
describe a simulation using the simple model developed in this work, which will il-
lustrate how, in principle, U-shaped patterns might arise from domain-general
learning mechanisms implemented in a Parallel Distributed Processing (PDP) net-
work. We will then relate these general ideas to the data and theory reviewed
above.

A SIMPLE ILLUSTRATION OF U-SHAPED CURVES
ARISING FROM DOMAIN-GENERAL LEARNING

The model is illustrated in Figure 1. It is derived from Rumelhart (1990; see also
McClelland & Rogers, 2003; Rogers & McClelland, in press; Rumelhart, Hinton
& Williams, 1986) and we direct the reader to this literature for details on how se-
mantic knowledge is encoded in the distributed representations by a feed-forward
PDP network trained with backpropagation. For the current purposes, we simply
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FIGURE 1. A connectionist model of semantic memory adapted from Rumelhart and Todd
(1993). The entire set of units used in the network is shown. Input units are shown on the left,
and activation propagates from the left to the right. Where connections are indicated, every unit
in the pool on the left is connected to every unit in the pool to the right. Units in the Item and Re-
lation layers corresponds to possible first terms and predicates in a simple proposition, respec-
tively. Activation of an input probe such as canary can provokes distributed patterns of activity
across Representation and Hidden layers. Output units correspond to possible completions of
different propositions, and the network is trained to turn on all those units that represent correct
completions of the input query. In the example shown, the correct units to activate are grow,
move, fly, and sing. Redrawn with alterations from Rumelhart and Todd (1993), Figure 1.9, page
15.



note that the model is trained, when provided with the first two terms of a simple
proposition, to generate appropriate completions across output units. To accom-
plish this, it must find a set of weights that will allow the distributed patterns of ac-
tivity produced across Representation and Hidden units by a given input to ulti-
mately activate the correct set of Attribute units (see Figure caption).

Two aspects of the network’s behavior work together as it learns to give rise to
U-shaped curves in development. First, the patterns of activity generated across the
Representation units by different inputs undergo a progressive, coarse-to-fine dif-
ferentiation (McClelland, McNaughton, & O’Reilly, 1995). That is, the model first
learns to generate different patterns for groups of items with broadly different sets
of output attributes (e.g., plants vs. animals), but shows little differentiation of
items within these groups. Later it comes to differentiate sub-groupings of items
within these broader sets (e.g., birds vs. fish), and only toward the end of learning
does it learn to assign quite different representations to individual items (e.g., robin
vs. canary). This coarse-to-fine pattern results from the fact that sets of properties
that coherently co-vary across many items exert convergent effects on the connec-
tion weights. Many co-varying properties differentiate plants from animals, so
these are learned first; several co-varying properties differentiate birds from land
animals, so these are learned second. Relatively idiosyncratic properties that dis-
tinguish individual items, such as the bat, from other similar items (the birds) are
learned relatively slowly (see Rogers & McClelland, in press).

Second, the weight changes provoked by the presentation of one item will influ-
ence the outputs generated by other items with similar internal representations.
However, as noted above, the similarities among internal representations change
over time—hence the way that new learning generalizes from one item to another
also changes over time. Early in learning, when plants are represented as different
from animals, learning about any animal will tend to generalize to all animals but
not to plants. Later, when the flying animals have been differentiated from the land
animals, what is learned about each flying animal will only transfer to the other
flying animals (including the bat, not yet differentiated from the birds).

To show how these two forces can give rise to U-shaped curves in learning,
we conducted a simple simulation with a model based on Rumelhart’s network.
The model was trained in an extended environment that included 8 individual
plants (4 trees and 4 flowers), and 15 animals (8 land animals, 4 birds, and 1
bat). Attributes were assigned to these items as in Rumelhart’s simulations—for
instance, the individual animals shared few attributes with the plants; the birds
shared some features with the animals, but had many more features in common
with one another; and each item had one or two idiosyncratic features. The im-
portant manipulation concerned the properties of the bat: it shared almost all of
its properties with the four birds, but like the land animals, the bat had fur, and
did not have feathers. Thus, these properties were consistent with the items in
the broad domain of animals (most of the 15 animals have fur and do not have
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feathers) but were inconsistent with one of the subgroups (the set of birds have
feathers and not fur).

Figure 2 shows the activation of the fur and feathers output units as the network
is trained, when it is queried to report the properties of the bat. Note that the model
is presented with each of the training patterns once in every epoch (sweep through
the training set). Thus, it is repeatedly exposed to the fact that the bat has fur and
not feathers. Nevertheless, its tendency to activate these properties changes dra-
matically over the course of learning: after 1500 epochs, the model correctly infers
that the bat has fur and not feathers; by 2100 epochs, it draws the opposite conclu-
sion; and by 6000 epochs it makes the correct inference again.

How does this pattern arise from the characteristics of the model reviewed
above? Internal representations differentiate progressively, so that the network first
discriminates plants from animals, but does not discern finer sub-groups within
these clusters. At this point, the characteristics of the majority of the animals are
applied to all animals. Nine of the animals (including the bat) have fur, whereas
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FIGURE 2. Activation of the output units corresponding to fur and feathers throughout
learning, when the network described in the text is queried to report the properties of the bat.



only four do not, so that at this stage the network activates the fur unit for all ani-
mals, including the bat. Later in learning, however, the network differentiates the
birds from the land animals. Because the bat shares most of its properties with the
birds, its representation remains similar to the birds and moves away from the other
animals. At this point, the network must learn to turn off the fur unit (and to acti-
vate the feathers unit) for all of the 4 birds. This learning again generalizes to the
bat, so that, despite repeated exposure to the correct pattern, the network reverses
its tendency to produce the correct response for this item. Finally, when the indi-
vidual bat representation has been sufficiently well differentiated from the 4 birds,
the model is again able to master the bat’s unusual properties.

DISCUSSION

The simulation illustrates one way in which a domain-general learning system can
produce a U-shaped pattern as it develops. Such curves are observed for items whose
properties are consistent with the general domain (e.g., most animals have fur), but
inconsistent with immediate neighbors (e.g., most flying animals do not). This basic
idea offers a somewhat different perspective on the views outlined earlier.

First, the simulation demonstrates that domain-general learning can lead to
changes similar to those that Pinker (1984, 1991) and Marcus et al. (1992) cite as
evidence for a qualitative shift from associative- to rule-based cognition. The
above simulation addresses both challenges posed by this view: the model exhibits
“unlearning” of an initially correct response, and it produces outputs that it has
never encountered directly in training (i.e., it was not taught that the bat has feath-
ers). Midway through training the model may seem to be over-generalizing an ex-
plicit rule, such as “all flying things have feathers”, and hence that it has shifted
from an “associative” to a “rule-based” mode. But this behavior is an emergent
property that arises from domain-general learning mechanisms and does not signal
a qualitative shift from associative to rule-based cognition. Note that, unlike the
simulation presented in Rumelhart and McClelland (1986), there is no change in
the training corpus during development; the set of training examples is held con-
stant throughout. Similarly, Plunkett and Marchman (1991) demonstrated
U-shaped past-tense learning with a constant training environment.

Second, the simulation offers a way of understanding how U-shaped patterns
like those of Madole and Cohen (1995) and Rakison (2003) might arise. Spe-
cifically, we envision the simulation as capturing critical aspects of a slow-learn-
ing neocortical system, which is complemented in the brain by a fast-learning
hippocampal system (McClelland et al., 1995). Constraints on new learning may
arise from the interaction of these systems. Suppose the network described
above is presented with a novel, bird-like item, and must, together with the
hippocampal system, rapidly learn that it has fur. If this occurs early in learning
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(around 1200 epochs), the existing knowledge in the neocortical system (which
attributes fur to all animals at this point) will partially support this new learning,
leaving the hippocampus with little work to do. Midway through development,
however, the neocortex will interfere with learning this item because at this stage
it attributes feathers and not fur to things that fly. Here the hippocampal system
will be taxed to overcome this bias. Thus the interplay of these systems may lead
to changes over time in the ease or difficulty of learning new associations. We
view this account as an example of the idea that constraints on learning new as-
sociations can arise from the constellation of associations that have been previ-
ously acquired.

Finally, this idea has clear parallels to the view expressed by Thelen and col-
leagues (e.g., Gershkoff-Stowe & Thelen, this issue; Thelen & Smith, 1994).
Specifically, U-shaped curves in the ability to acquire new associations arise be-
cause the observed behavior is supported by multiple systems operating in paral-
lel. The U-shaped pattern reflects dynamics in the neocortical system, which can
either facilitate or interfere with the hippocampal system’s ability to master the
new association.

REFERENCES

Cohen, L. B. (1998). An information-processing approach to infant perception and cognition. In F.
Simion & G. Butterworth (Eds.), The Development of sensory, motor, and cognitive capacities in
early infancy (pp.277–300). East Sussex: Psychology Press.

Madole, K. L. & Cohen, L. B. (1995). The role of object parts in infants’attention to form-function cor-
relations. Developmental Psychology, 31, 637–648.

Marcus, G. F., Pinker, S., Ullman, M., Hollander, M., Rosen, T. J., & Xu, F. (1992). Overregularization
in language acquisition. Mongraphs of the Society for Research in Child Development, 4, Serial No.
228.

McClelland, J. L., McNaughton, B. L., & O’Reilly, R. C. (1995). Why there are complementary learn-
ing systems in hippocampus and neocortex: Insights from the successes and failures of connectionist
models of learning and memory. Psychological Review, 102, 419–457.

McClelland, J. L. & Rogers, T. T. (2003). The Parallel Distributed Processing approach to semantic
cognition. Nature Reviews Neuroscience, 4, 310–322.

Pinker, S. (1984). Language learnability and language development. Cambridge, MA: Harvard Uni-
versity Press.

Pinker, S. (1991) Rules of language. Science, 253, 530–535.
Plunkett, K., & Marchman, V. A. (1991, XmonthX, XdayX). U-shaped learning and frequency effects

in a multi-layered perceptron: Implications for child language acquisition. Cognition, 38, 43–102.
Rakison, D. H. (2003). The development of infants’ knowledge of causal role and onset of motion.

Manuscript submitted for publication.
Rogers, T. T., & McClelland, J. L. (in press). Semantic cognition: A Parallel Distributed Processing Ap-

proach. Cambridge, MA: MIT Press.
Rumelhart D. E., & McClelland J. L. (1986). On learning past tenses of English verbs. In D. E.

Rumelhart and J. L. McClelland (Eds.), Parallel Distributed Processing: Vol 2: Psychological and
biological models (pp. XX–XX). Cambridge, MA: MIT press.

144 ROGERS, RAKISON, McCLELLAND



Rumelhart, D. E. (1990). Brain style computation: Learning and generalization. In S. F. Zornetzer, J. L.
Davis, & C. Lau (Eds.), An introduction to neural and electronic networks (pp. 405–420). San Diego:
Academic Press.

Rumelhart, D. E., Hinton, G. E. & Williams, R. J. (1986, XmonthX, XdayX). Learning representations
by back-propagating errors. Nature, 323, 533–536.

Rumelhart, D. & Todd, P. M. (1993). Learning and connectionist representations. In D. E. Meyer & S.
Kornblum (Eds.), Attention and Performance vol. 14, 3–30.

Thelen, E., & Fisher, D. M. (1982). Newborn stepping: An explanation for a “disappearing reflex.” De-
velopmental Psychology, 18, 760−775.

Thelen, E., Fisher, D. M., Ridley-Johnson, R., & Griffin, N. J. (1982). The effects of body build and
arousal on newborn infant stepping. Developmental Psychobiology, 15, 447−453.

Thelen, E., & Smith, L. B. (1994). A dynamic systems approach to the development of cognition and ac-
tion. Cambridge, MA: MIT Press.

U-SHAPED CURVES IN DEVELOPMENT 145


