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Abstract
In traditional theories of semantic memory, performance of semantic tasks
relies upon a mediating process of categorization. However, categorization-
based theories do not capture the complex and flexible ways in which peo-
ple use their conceptual knowledge to perform natural semantic tasks im-
posed on them by the environment. For example, both children and adults
understand that a given property may be important for categorizing some
kinds of objects, but not others; that different kinds of properties generalize
across different groups of objects; and that insides can be more important
for determining category membership than outsides. Consequently, some
researchers propose to describe conceptual knowledge in terms of naive the-
ories about causal mechanisms. In the current work, we present simulations
using a simple connectionist network that learns the mappings between ob-
jects and their properties in different contexts. We show that the evolu-
tion of representations throughout learning in our model constrains the ease
with which particular object properties can be learned, and how they will
generalize. The configuration of weights at any point during development
may provide the kinds of ‘enabling constraints’ on acquisition that some
researchers attribute to naive theories. Many of the phenomena that arise
in the theory-theory tradition may be understood within this framework.
Knowledge about how object properties vary across contexts is stored in
connection weights that are learned from experience. This knowledge plays
the role that naive theories play in the theory-theory framework.



ARE THEORIES NECESSARY? 2

Introduction

Theories of conceptual knowledge that emphasize the role of learning and experience in
acquisition have come under fire in recent years. Such theories are generally thought to be too
underconstrained to adequately explain conceptual development, without additional explanatory
constructs, such as implicit theories. Among the phenomena that would seem to support this view
are the following:

� Illusory correlations: children and adults may create or enhance some object-property
correlations, while ignoring others.

� Feature centrality: A given feature may be important for some categories of objects, but
not others.

� Flexible generalization: Children and adults can generalize their knowledge in ways that
challenge simple similarity-based mechanisms.

� Expertise: Different kinds of experts may acquire different representations of objects in
the same domain.

We have been investigating the capacity of the parallel distributed processing (PDP) frame-
work to provide a general theory of semantic memory. Our approach builds upon earlier work by
Hinton (1981) and Rumelhart (Rumelhart, Smolensky, McClelland, & Hinton, 1986; Rumelhart
& Todd, 1993). Under the PDP theory, semantic memory is encoded in the weights of a connec-
tionist network, which must learn the mappings between objects and their properties in different
contexts. Domain-general learning mechanisms sensitive to the structure of the environment lead
the system to gradually acquire correct mappings; and in so doing, to discover abstract, distributed
representations of objects that capture their deep similarity relations in the context of a particular
task. Thus, under this view, the development of conceptual knowledge is largely driven by expe-
rience. Learned similarities among the system’s internal representations provide a mechanism for
knowledge generalization and induction. However, because knowledge about a given object and
a particular task both provide graded constraints on the system’s internal states, different kinds of
knowledge may generalizae across different groups of objects.

We believe this framework provides a powerful set of tools for understanding human perfor-
mance in semantic tasks. However, the PDP theory clearly relies to a great extent on mechanisms
of learning to explain conceptual development. How might it explain the empirical observations
that seem to undermine learning-based theories?

A simple implementation of the theory, adapted from Rumelhart and Todd (1993), is shown
in Figure 1. Input units appear on the left, and activation propagates from the left to the right.
Where connections are indicated, every unit in the pool on the left is connected to every unit in the
pool to the right. Each unit in the Item layer corresponds to an individual object in the environment.
Each unit in the Context layer represents contextual constraints on the kind of information to be
retrieved. Thus, the input pair canary can corresponds to a situation in which the network is shown
a picture of a canary, and asked what it can do. The network is trained to turn on all those units
that represent correct completions of the input query. In the example shown, the correct units to
activate are grow, move, fly, and sing. To find a set of weights that allow the model to perform
correctly, it is trained with backpropagation. As small changes to the weights accumulate, the
network gradually acquires distributed internal representations of the various items that capture
their semantic relations.
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Figure 1. A simple feed-forward implementation of the theory, based on the model proposed by Rumelhart
and Todd (1993).

The first layer of weights maps each individual input unit to a distributed pattern of activity
across the units in the layer labeled Representation. Initially, all the weights in the network are
small and random, and the patterns of activity corresponding to various items are all similar. As
the network’s weights change to improve its performance, these internal representations gradually
differentiate. Figure 2 shows a multidimensional scaling of the network’s internal representations
of all 21 items, at ten different points during training. The proximity of points in the diagram
indicates the degree to which their internal representations are similar. Each line corresponds to a
single item, and traces the trajectory of that item’s representation throughout learning. The figure
shows that initially, all representations are similar to one another. The model first differentiates
items into global categories (plants and animals), and only later differentiates finer-grained cat-
egories. To the extent that two items have similar representations, the network is pressured to
generalize its knowledge from one to the other.
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Figure 2. A multidimensional scaling of the model’s internal representations of objects, at several points
during training. See text for explanation.

The second layer of weights, including those projecting from the Context layer, capture
the similarities among various items in a particular context. The weights projecting from the
Representation layer and the Context layer provide graded constraints on the pattern of activity
generated across units in the layer labeled Item in context. In this layer, the same object may be
represented differently, depending upon the context. Figure 3 shows a multidimenstional scaling
of the representations of sixteen items in the Representation layer (middle); and in the Item in
context layer, with either the is (top) or the can (bottom) context units active. In the is context,
representations of objects are fairly spread out. In the can context, all the plants are collapsed to an
essentially identical representation, because they all share the same behavior—the only thing they
can do is grow.

The third layer of weights captures the mappings between representations of items in context,
and the actual properties that may be inferred. Thus, as shown in Figure 4, the canary activates a
completely different set of output units in the can and is contexts.
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Figure 3. A multidimensional scaling of the model’s internal representations of objects independent of
context (middle), and across the Item in context layer, with the is (top) and the can (bottom) context units
active in the input. The illustration shows that different similarity relations among the same items are
represented in different contexts.
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Figure 4. The final set of weights capture the mappings between representations of an object in a given
context, and explicit object properties. The top illustration shows the set of output units that activate for the
item canary, when it is probed in the is and has contexts. Obviously, the same item activates a completely
different set of properties in the two different contexts. Note that, because different similarity relations are
represented in the two contexts, the network will tend to generalize has and is properties across different
groups of objects.
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Illusory correlations

Several studies have shown that subjects may persist in the belief that particular objects and
properties have occurred together frequently, even in the face of empirical evidence to the con-
trary; and they may discount or ignore the co-occurrence of object-property pairs during learning,
on the basis of past experience (e.g. Keil, 1991). For example, Massey and Gelman (1988) showed
preschoolers static pictures of various unfamiliar objects, living and nonliving, and asked them to
decide whether each object would be able to move up and down a hill on its own. Some of the
nonliving things were shaped like animate objects (e.g. a figurine), whereas some of the living
things were extremely atypical animals (e.g. an echidna). The ontological status of each item (i.e.
living or nonliving) was not revealed to the child, but had to be inferred from the appearance of the
object. After making their decision, the authors asked children to explain their choices. The fol-
lowing protocols demonstrate that children often referred to properties of objects that were clearly
not present in the picture, and ignored the presence of other properties that were not consistent
with their decision:

M.B. (3 yrs 7 mos)

Insect-eye Figurine

DOWN BY SELF? No. WHY NOT? Because it’s metal and doesn’t have any shoes
or feet.

ARE THOSE FEET? (E POINTS TO THE FEET.) No.

Echidna

DOWN BY SELF? Yeah. WHY? It has feet and no shoes.

CAN YOU POINT TO THE FEET? I can’t see them.

Illusory correlations seem to present a problem for learning-based theories of conceptual
representation: if children acquire their semantic knowledge simply by learning which objects
have which properties, why should they make these claims, which are clearly in violation of their
perceptual experience? The model suggests one answer: early in learning, it assigns similar rep-
resentations to all the plants, including the pine tree. Because most of the plants have leaves, this
property is learned quickly and generalizes to the pine tree by virtue of representational similar-
ities. Even though the network is taught repeatedly that the pine tree does not have leaves, such
learning is overwhelmed by similarity-based generalization. As the pine differentiates itself from
the other plants, these forces diminish, and the model ultimately learns the correct response. These
properties are shown in Figure 5: at epoch 1500, when the model has been trained 150 times that
the pine does not have leaves, it nevertheless strongly activates the has leaves unit when probed
with the pine. The same influences prevent the network from activating the property can sing for
the canary until it is sufficiently distinguished from related objects, all of which can not sing.



ARE THEORIES NECESSARY? 8

Epochs

A
ct

iv
at

io
n

0
�

1000 2000 3000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Pine has leaves
Canary can sing
�

Figure 5. The response of two output units (has leaves and can sing) when the network is probed for its
knowledge of the pine and canary, respectively. See text for interpretation.

Feature centrality

A second problem for learning-based theories of concept acquisition is that the relevance of a
given feature can vary from category to category. For example, color appears to be more important
for discriminating among foods than toys. To demonstrate this, Macario (1991) showed children
a collection of wax objects that varied in shape and color. The children were introduced to a toy
alligator, and were taught a new fact about one of the nonsense objects. In one condition, children
were told that the toy alligator liked to eat the object; in the other, they were told the alligator liked
to play with the object. They were then asked to guess which other nonsense objects the alligator
might like to eat or play with. When lead to believe the objects were a kind of food, children
inferred that other objects of the same color would be good to eat. When they thought the objects
were kinds of toys, they ignored color information and inferred that objects of the same shape
would be fun to play with. Without any foreknowledge of the categories food and toy, how can the
semantic system figure out which properties are important and which irrelevant?

In the model’s environment, properties were assigned to items in such a way that size, but
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The alligator likes to
PLAY WITH this:

The alligator likes to
EAT this:

What else does the alligator like to PLAY WITH?

What else does the alligator like to EAT?

Figure 6. A schematic of Macario’s (1991) experiment, showing that color seems to be more important
than shape for determining similarity among food objects; but that the reverse is true for toys. See text for
interpretation.
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Figure 7. The figure illustrates how the model can represent novel objects with familiar properties—see
text for details.

not brightness, was important for discriminating between the trees and flowers; and brightness, but
not size, was important for discriminating between the birds and fish. Thus, among the animals,
all the birds were bright and all the fish were dull, but a given bird or fish could be either large or
small. The reverse was true for plants: trees were large and flowers were small, but a given tree or
flower could be either bright or dull.

To simulate Macario’s (1991) experiment, we presented the model with novel nonsense ob-
jects varying in size (large or small) and brightness, and allowed it to find appropriate representa-
tions for each, by backpropagating activation from the appropriate output units. For example, to
find an appropriate representation for a large, bright object, we would choose a neutral starting pat-
tern across the Representation units, forward-propagate activity to the output units, and calculate
the error signal across the units large and bright. We would then use this error signal to adjust the
pattern of activity across Representation units.

In the first simulation, we used this procedure to find appropriate representations for four
objects varying in size and brightness, all of which shared a property common to plants (has roots).
In the second, the network found representations for the same four items, but was taught that they
all shared a property with animals (has skin).
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Figure 8. Hierarchical cluster analysis showing the similarities among representations discovered by the
network for four novel objects varying in size and brightness. When the four objects shared a property with
plants, they were grouped by the model on the basis of size. When they shared a property with animals, they
were grouped on the basis of brightness.

Figure 8 shows a hierarchical cluster analysis of the internal representations derived by the
network, given that the four nonsense objects shared a property with plants or with animals. When
they shared a property with plants, the network grouped them on the basis of size; when they
shared a property with animals, it grouped them on the basis of color. Thus the network seems to
“know” that color is important for discriminating animals; but size is important for discriminat-
ing plants. This knowledge is encoded in the weights that allowed the model to find appropriate
representations for the objects, and was learned from the statistical structure of its environment.
In the network’s world, all trees are big and all flowers are small; but a given tree or flower can
be either bright or dull. The opposite is true for animals. Hence, the relative contribution of size
or brightness to the representations derived by the network depends on the extent to which the
stimulus context—the other features that make up the stimulus—are animal- or plant-like.
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Flexible generalization

Children and adults may also generalize newly-acquired knowledge in quite sophisticated
ways. For example, children at quite young ages know that different kinds of properties generalize
across different groups of objects. Such flexibility is sometimes taken to undermine similarity-
based theories of concept knowledge. The model illustrates how the integrated influences of object
and context knowledge may conspire to support such sophisticated patterns of generalization.

Figure 9 shows how we teach the network a new fact about a familiar object. We first add
a new unit to represent the novel predicate (e.g. queem), and a new set of weights connecting
this unit to the Item in context layer. Next, we activate the appropriate Item and Context inputs,
and train the network to activate the new output unit. In this case, to form an association between
the model’s internal representation and the new property without disrupting its knowledge of the
domain, we allow it to adjust only the weights projecting to the new property unit. Once the
network has learned, we may probe it with other inputs and contexts, to see how its newly acquired
knowledge generalizes.

Figure 10 shows how the network generalizes a newly learned property in different contexts,
at two different points during learning. After 500 epochs of training, the network generalizes the
new property to all items in the same superordinate category, regardless of the context in which
the new fact was learned. Later in learning, however, the model generalizes the newly learned
property differently, depending on whether it is an is, can, or has property. Thus, the model seems
to know that different properties generalize across different groups of objects. Moreover, this
capacity shows a developmental progression.

The reason the network shows this behavior is that different contexts bring out different
similarity relations among items, as shown above in Figure 3. The constraints provided the Context
weights evolve gradually, as do the network’s internal representations of objects. Together, these
conspire to produce different patterns of generalization throughout development.

Young children’s induction behavior is sophisticated enough that they may generalize newly
learned facts in ways that are entirely appropriate, but which violate taxonomic constraints. In one
study, children were shown a picture of a brontosaurus and a picture of a rhinocerous (Gelman &
Markman, 1986). They were taught the names of the animals, and a new fact about each. Half the
children were taught a biological fact (e.g. the dinosaur has cold blood, but the rhinocerous has
warm blood), and half were taught a physical property (e.g. the dinosaur weighs one hundred tons,
but the rhinocerous weighs one ton). The children were then shown a picture of a triceratops, which
they were told was another kind of dinosaur; however, the triceratops more closely resembled the
rhinocerous. Children who learned the biological fact extended it to the triceratops on the basis of
category membership; that is, they were more likely to say that the triceratops was cold-blooded
like the brontosaurus. By contrast, children who were taught the physical property were less likely
to use the category as the basis for generalization: most either guessed that the triceratops was one
ton, like the hippo, or were uncertain.

To demonstrate the flexibility that can be captured by the model, we simulated Gelman and
Markman’s (1986) experiment, using a combination of the techniques described above. We first
showed the model a novel brontosaurus, with the visible properties is large, is bright, has skin,
and has legs; and a novel rhinocerous, with the properties is small, is dull, has skin, and has legs.
Using the procedure described above, we allowed the network to derive appropriate representations
for these items. We then taught the model three new facts about each: a name (“dinosaur” or
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Figure 9. To teach the model a new fact about a familiar object, we simply add a new output unit to
represent the novel property, and train the model to activate it for the appropriate object and context input.
See text for details.

“rhinocerous”), a biological fact (has warm blood or has cold blood), and a physical fact (is one
ton or is one hundred tons). We added a new output unit corresponding to each property, and
trained the model to activate the correct units when probed with the brontosaurus or rhinocerous
representations in the appropriate contexts. Finally, we “showed” the network a third novel animal
(the triceratops), which had the same visible properties as the rhinocerous (small, dull, skin, legs);
but we also taught the network that it was called a “dinosaur” like the brontosaurus. We allowed
the network to derive an appropriate representation for the triceratops, and then probed it with
the has and is contexts to see how it would generalize the newly-learned biological and physical
properties.

The results are shown in Figure 12. The network inferred that the triceratops is one ton like
the rhinocerous, on the basis of is physical similarity; but that it has cold blood like the bron-
tosaurus, on the basis of having the same name.
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Figure 10. The figure shows the activation of the novel output unit queem in response to various items,
after the model has been trained to activate the unit in response to the input maple paired with each of the
is, has, and can contexts. Early learning, the property generalizes across the entire superordinate category,
regardless of the context in which it was learned. Later, it generalizes across different groups of objects,
depending on the context.

Expertise

Finally, recent studies of expertise have also undermined learning-based theories of concep-
tual knowledge representation. Medin, Lynch, and Coley (1997) have reported that judgments of
similarity can vary among experts, depending upon the kind of expertise they have acquired. They
performed sorting experiments with three kinds of tree experts: landscapers, biologists, and parks
maintenance workers. Presumably the three groups were equally familiar with the same species of
trees. Despite this, there were interesting differences in their sorting behavior. Biologists tended
to stick fairly close to the scientific taxonomy, regardless of the surface characteristics of various
trees, whereas lanfscapers and maintenance workers were more likel;y to deviate from the scientific
taxonomy for uncharacteristic trees. Moreover, landscapers and maintenance workers consistently
grouped together a category of “weed” trees, whose members shared no essential or biological
characteristics, but were grouped together presumably because they demand similar treatment in
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Does it have cold blood
like the other dinosaur,
or warm blood like the
rhinocerous?

Is it one hundred tons
like the other dinosaur,
or one ton like the
rhinocerous?

- Has cold blood
- Is 100 tons

- Has warm blood
- Is one ton

Same
Name
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Similar

COLD BLOOD ONE TON

"Dinosaur" "Rhinocerous"

"Dinosaur"

Figure 11. Schematic of Gelman and Markman’s (1986) experiment. Young children use category-label
information to generalize biological properties (such as warm or cold blood), but use visual similarity to
generalize physical properties (such as weight). See text for details.

the day-to-day tasks of the maintenaqnce workers and landscapers. These results suggest that the
processes by which we construct semantic representations involve more than the simple accumu-
lation of perceived properties. Instead, the manner in which we use and interact with objects may
also inform the structures we acquire to guide our performance in semantic tasks.

The same is true in our simple network. To demonstrate this, we trained two models on the
same set of patterns; however, we varied the frequency with which the items were presented in a
particular context. To create a “scientific” network, concerned with the behaviors of objects, we
trained the model most frequently in the can context. To create an “artistic” network, concerned
with the appearance of objects, we trained a second model most frequently in the is context. Both
models ultimately learned to complete all patterns in all contexts; however, the internal represen-
tations of objects they acquired in the context-free Representation layer differed substanitally, as
shown by the hierarchical cluster analysis in Figure 13.
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Figure 12. To simulate the experiment with the model, we use a combination of the techniques described
previously. Like the children in Gelman and Markman’s (1986) experiment, the network uses similarity in
appearance (is properties) to generalize novel physical properties; and category label to generalize novel
“biological” (i.e. has) properties. See text for details.
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Figure 13. Hierarchical cluster plots of the similarities among context-independent representations in the
model for the same 21 instances, when the model is trained with either can (left) or has (right) contexts most
frequent.

Conclusions

Recent theoretical consensus has it that conceptual knowledge acquisition cannot be ex-
plained without reference to implicit theoretical knowledge, which constrains the manner in which
the structure of the environment informs concept representations. However, we have shown that
the principles embodied in the PDP framework (as illustrated by a simple feed-forward model) pro-
vide a natural explanation for many of the empirical phenomena upon which this consensus rests.
To what extent, then, are theories necessary to constrain concepts? The answer to this question,
of course, depends upon the meaning of the word “theory.” In the PDP framework, knowledge
for all objects and properties is coded in the same set of weights; hence, such general knowledge
always colors the processing of a particular item in a given context. The state of the weight matrix
at any point in development constrains the ease with which new properties may be learned, and the
manner in which they will generalize. Whether or not such influences count as implicit theories,
then, is a question of semantics.
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