Psych 711 Homework 3
Part 1. XOR Problem [50 points]

Download and unzip the file XOR.zip from the course web page, which contains the following: 

XOR.in
XOR.ex
XOR.init.wt
XOR.new.wt 

These files define a network to solve the XOR problem. (Although the Lens Examples/ subdirectory contains a version of the XOR network, xor.in, don't use that version for this homework.) 

Start up Lens, load XOR.in, and screen capture the initial weights using the Link Viewer. If you ever want to reinstate these weights, just reset the network (from the main panel) and then load the weights XOR.init.wt. 

First, open the Unit Viewer and test the network on each example, using the initial weights. 

1A [5 pts.] Explain, in terms of the weights in the network and the properties of the sigmoid activation function, why the computed output activations are so similar across the four patterns even though the inputs are very different. 

"Batch Size" is set to 1, so the weights are updated after each training pattern. Also, "Weight Updates" is 1, so the training will stop after each pattern is presented. Click on "Train" to train the network on the first pattern ("0 0 => 0"). Note the activation values of the hidden and output units. Then, in the Unit Display, select "Input Derivatives" from the "Value" menu to display the derivative of the error with respect to the net input of each unit in the network. (The values for the input and bias units are 0.0 because these units don't compute net inputs.) 

1B [5 pts.] Explain, based on the weights in the network and the unit activations for the first pattern, why the input derivative of one hidden unit is much smaller than that of the other, and why both are very much smaller than the value for the output unit. 

Select "Outputs and Targets" from the "Value" menu to go back to displaying unit activations and targets. Reset the network and reload the initial weights (XOR.init.wt). Set "Batch Size" to 0 in the main panel. This causes Lens to run all of the training patterns, accumulating weight changes as it goes, before actually changing the weights---so-called "batch" learning. Also set "Weight Updates" to 30 in the main panel. Then click on "Train" to train for 30 epochs. Notice (in the error graph) that the error drops only slightly during this period. 

1C [5 pts.] Describe the changes to the weights and biases produced by the first 30 epochs of learning (by comparison with the initial weights printed or saved to a file earlier), and the resulting effects on the activation of the output unit and the delta (input derivative) values for the hidden and output units. 

Train for another 150 epochs (for a total of 180 epochs) and use the Unit Viewer to look at the hidden and output activations for each pattern. At this point, the activity of the first hidden unit is more-or-less directly proportional to the number of active input units, whereas the other is unresponsive. 

1D [5 pts.] Explain why the responsive unit is behaving the way it is, and why, over the next few epochs of training, its incoming weights will continue to change more rapidly than those of the other, unresponsive hidden unit. 

Train for another 30 epochs (210 total). Notice that the error is starting to drop quickly, and that the first hidden unit is now behaving similar to the boolean function OR in that it is on if either input is on (except that its output is near 0.5 instead of zero for the 00 case). 

1E [5 pts.] Explain how the first hidden unit is approximating the OR function (in terms of its weights, bias, and activation function) and how this is contributing to reducing the error. 

Train for another 30 epochs (240 total). Notice that the error continues to drop, and that now the second hidden unit is starting to differentiate its response across the four patterns. (Also note that some of the weights have grown rather large---you will need to use the slider on the right-hand side of the Link Viewer to rescale the weight display to see all the differences.) 

1F [5 pts.] Describe what the second hidden unit is doing at this point, how it accomplishes this given its weights, and how it is contributing to further reducing the error. 

Train for another 60 epochs (300 total). At this point the network is nearly perfect at all four patterns. Screen capture the final weights (being sure to rescale the display appropriately) and include this with your homework.
Now reset the network and load in the weights XOR.new.wt. Print (or save to a file) these initial weights. Now train the network for 300 epochs, at which point the network has again solved the XOR problem, although in a rather different way. Screen capture these new final weights (again, appropriately rescaled) and include this as well. 

1G [20 pts.] Describe how this second solution works, in terms of the behavior of each hidden unit and how they contribute to generating the correct output values. Try to explain, for both the initial run and for this one, what features of the initial weights led the network to develop the particular solution it came up with. 

Part 2. Implementing Another Feedforward Problem [50 points]

Study another feedforward problem of your choosing. Be sure to stick with a smallish problem, involving no more than 10-15 units in total and maybe a dozen or so training patterns. Take a look at the back-propagation chapter from the first PDP volume (PDP1:8; reading for October 7) for some ideas (e.g., parity, encoder, symmetry, negation), but feel free to come up with something more interesting. Binary addition is tricky to make work, and should be avoided unless you are interested in a challenge. Stay away from the T-C problem and other things later in the PDP1:8 chapter.

You will need to create new script and example files, which can be done by copying existing files from the Lens demo networks (e.g., XOR.in and XOR.ex) and modifying them appropriately, or by following the handy class tutorial for building networks.

Carry out learning experiments in which you examine what aspects of the training set the network finds easy or more difficult to learn, and how well it generalizes to patterns that are withheld from training (much like you did for your pattern association problem in Homework 3). Explore the impact that changes to the learning rate and/or momentum have on the speed and efficacy of learning. Be sure to try to explain your results based on your understanding of the properties of connectionist networks and the back-propagation learning procedure. 

In writing up your results, include a description of the problem you have chosen and why you find it interesting, and a print-out of the weights of your network before and after training. Try to stay under 1000 words (about two pages). 

